1.Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203, China
4.State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macao 999078, China
yebing@impcas.ac.cn (Bing Ye)
j.liu@impcas.ac.cn (Jie Liu),
Scan for full text
Shuai Gao, Jin-Hu Yang, Bing Ye, et al. Differences in MBUs induced by high-energy and medium-energy heavy ions in 28 nm FPGAs. [J]. Nuclear Science and Techniques 33(9):112(2022)
Shuai Gao, Jin-Hu Yang, Bing Ye, et al. Differences in MBUs induced by high-energy and medium-energy heavy ions in 28 nm FPGAs. [J]. Nuclear Science and Techniques 33(9):112(2022) DOI: 10.1007/s41365-022-01099-7.
Multiple-bit upsets (MBUs) have become a threat to modern advanced field-programmable gate arrays (FPGAs) applications in radiation environments. Hence, many investigations have been conducted using medium-energy heavy ions to study the effects of MBU radiation. However, high-energy heavy ions (HEHIs) greatly affect the size and percentage of MBUs because their ionization track structures differ from those of medium-energy heavy ions. In this study, the different impacts of high-energy and medium-energy heavy ions on MBUs in 28 nm FPGAs as well as their mechanisms are thoroughly investigated. With the Geant4 calculation, more serious energy effects of HEHIs on MBU scales were successfully demonstrated. In addition, we identified worse MBU responses resulting from lowered voltages. The MBU orientation effect was observed in the radiation of different dimensions. The broadened ionization tracks for tilted tests in different dimensions could result in different MBU sizes. The results also revealed that the ionization tracks of tilted HEHIs have more severe impacts on the MBU scales than medium-energy heavy ions with much higher linear energy transfer. Therefore, comprehensive radiation with HEHIs is indispensable for effective hardened designs to apply high-density 28 nm FPGAs in deep space exploration.
FPGAHigh-energy heavy ion radiationMBUIonization track
L. D. van Harten, M. Mousavi, R. Jordans et al., Determining the necessity of fault tolerance techniques in FPGA devices for space missions. Microprocess. Microsy. 63, 1-10 (2018). doi: 10.1016/j.micpro.2018.08.001http://doi.org/10.1016/j.micpro.2018.08.001
T. Vladimirova, X. Wu, C.P. Bridges, Development of a satellite sensor network for future space missions, in Paper Presented at the 2008 IEEE Aerospace Conference (Big Sky, MT, USA 1-10 Mar. 2008). doi: 10.1109/AERO.2008.4526248http://doi.org/10.1109/AERO.2008.4526248
L.A. Aranda, N.J. Wessman, L. Santos et al., Analysis of the critical bits of a RISC-V processor implemented in an SRAM-based FPGA for space applications. Electronics. 9, 175 (2020). doi: 10.3390/electronics9010175http://doi.org/10.3390/electronics9010175
D. Yang, Z. Cao, X.J. Hao et al., Readout electronics of a prototype time-of-flight ion composition analyzer for space plasma. Nucl. Sci. Tech. 29, 60 (2018). doi: 10.1007/s41365-018-0390-4http://doi.org/10.1007/s41365-018-0390-4
M. Ceschia, M. Violante, M.S. Reorda et al., Identification and classification of single-event upsets in the configuration memory of SRAM-based FPGAs. IEEE Trans. Nucl. Sci. 50, 2088-2094 (2003). doi: 10.1109/TNS.2003.821411http://doi.org/10.1109/TNS.2003.821411
R. Koga, K. Crawford, P. Yu et al., Heavy ion and proton see characterization of COTS 0.22/spl mu/m field programmable gate arrays, in Paper Presented at the IEEE Radiation Effects Data Workshop (Seattle, WA, USA 57-64 Jul. 2005). doi: 10.1109/REDW.2005.1532666http://doi.org/10.1109/REDW.2005.1532666
W.T. Yang, X.C. Du, Y.H. Li et al., Single-event-effect propagation investigation on nanoscale system on chip by applying heavy-ion microbeam and event tree analysis. Nucl. Sci. Tech. 32, 106 (2021). doi: 10.1007/s41365-021-00943-6http://doi.org/10.1007/s41365-021-00943-6
H. Quinn, P. Graham, J. Krone et al., Radiation-induced multi-bit upsets in SRAM-based FPGAs. IEEE Trans. Nucl. Sci. 52, 2455-2461 (2005). doi: 10.1109/TNS.2005.860742http://doi.org/10.1109/TNS.2005.860742
Z.L. Yang, X.H. Wang, H. Su et al., Experimental study on heavy ion single-event effects in flash-based FPGAs. Nucl. Sci. Tech. 27, 1-8 (2016). doi: 10.1007/s41365-016-0015-8http://doi.org/10.1007/s41365-016-0015-8
T.W. Li, H.J. Liu, H.G. Yang, Design and characterization of SEU hardened circuits for SRAM-based FPGA. IEEE Trans. VLSI. Syst. 27, 1276-1283 (2019). doi: 10.1109/TVLSI.2019.2892838http://doi.org/10.1109/TVLSI.2019.2892838
A.M. Keller, T.A. Whiting, K.B. Sawyer et al., Dynamic SEU sensitivity of designs on two 28-nm SRAM-based FPGA architectures. IEEE Trans. Nucl. Sci. 65, 280-287 (2017). doi: 10.1109/TNS.2017.2772288http://doi.org/10.1109/TNS.2017.2772288
D.S. Lee, M. Wirthlin, G. Swift et al., Single-event characterization of the 28 nm Xilinx Kintex-7 field-programmable gate array under heavy ion irradiation, in Paper Presented at the 2014 IEEE Radiation Effects Data Workshop (Paris, France 1-5 Jul. 2014). doi: 10.1109/REDW.2014.7004595http://doi.org/10.1109/REDW.2014.7004595
L.A. Tambara, F.L. Kastensmidt, N.H. Medina et al., Heavy ions induced single event upsets testing of the 28 nm Xilinx Zynq-7000 all programmable SoC, in Paper Presented at the 2015 IEEE Radiation Effects Data Workshop (Boston, MA, USA 1-6 Jul. 2015). doi: 10.1109/REDW.2015.7336716http://doi.org/10.1109/REDW.2015.7336716
G.M. Swift, S.E. Stone, S.E. García et al., Dynamic SEE testing of selected architectural features of Xilinx 28 nm Virtex-7 FPGAs, in Paper Presented at the 2017 17th European Conference on Radiation and Its Effects on Components and Systems (Geneva, Switzerland 1-6 Oct. 2017). doi: 10.1109/RADECS.2017.8696210http://doi.org/10.1109/RADECS.2017.8696210
D.S. Lee, G.M. Swift, M.J. Wirthlin et al., Addressing angular single-event effects in the estimation of on-orbit error rates. IEEE Trans. Nucl. Sci. 62, 2563-2569 (2015). doi: 10.1109/TNS.2015.2498641http://doi.org/10.1109/TNS.2015.2498641
J. Tonfat, F.L. Kastensmidt, L. Artola et al., Analyzing the influence of the angles of incidence on SEU and MBU events induced by low LET heavy ions in a 28-nm SRAM-based FPGA, in Paper Presented at the 2016 16th European Conference on Radiation and Its Effects on Components and Systems (Bremen, Germany 1-6 Sept. 2016). doi: 10.1109/RADECS.2016.8093186http://doi.org/10.1109/RADECS.2016.8093186
J. Tonfat, J.R. Azambuja, G. Nazar et al., Analyzing the influence of voltage scaling for soft errors in SRAM-based FPGAs, in Paper Presented at the 2013 14th European Conference on Radiation and Its Effects on Components and Systems (Oxford, UK 1-5 Sept. 2013). doi: 10.1109/RADECS.2013.6937403http://doi.org/10.1109/RADECS.2013.6937403
F.L. Kastensmidt, J. Tonfat, T. Both et al., Voltage scaling and aging effects on soft error rate in SRAM-based FPGAs. Microelectron. Reliab. 54, 2344-2348 (2014). doi: 10.1016/j.microrel.2014.07.100http://doi.org/10.1016/j.microrel.2014.07.100
M. Wirthlin, High-reliability FPGA-based systems: space, high-energy physics, and beyond, in Paper Presented at the Proceedings of the IEEE, 103, 379-389 (2015). doi: 10.1109/JPROC.2015.2404212http://doi.org/10.1109/JPROC.2015.2404212
P.E. Dodd, J.R. Schwank, M.R. Shaneyfelt et al., Heavy ion energy effects in CMOS SRAMs. IEEE Trans. Nucl. Sci. 54, 889-893 (2007). doi: 10.1109/TNS.2007.893425http://doi.org/10.1109/TNS.2007.893425
M. Glorieux, A. Evans, T. Lange et al., Single-event characterization of xilinx ultrascale+® mpsoc under standard and ultra-high energy heavy-ion irradiation, in Paper Presented at the 2018 IEEE Radiation Effects Data Workshop (Waikoloa, HI, USA 1-5 Jul. 2018). doi: 10.1109/NSREC.2018.8584296http://doi.org/10.1109/NSREC.2018.8584296
B.Y. Du, L. Sterpone, S. Azimi et al., Ultrahigh energy heavy ion test beam on Xilinx Kintex-7 SRAM-based FPGA. IEEE Trans. Nucl. Sci. 66, 1813-1819 (2019). doi: 10.1109/TNS.2019.2915207http://doi.org/10.1109/TNS.2019.2915207
Z.Q. Feng, Nuclear dynamics and particle production near threshold energies in heavy-ion collisions. Nucl. Sci. Tech. 29, 40 (2018). doi: 10.1007/s41365-018-0379-zhttp://doi.org/10.1007/s41365-018-0379-z
H. Wang, J.H. Chen, Study on open charm hadron production and angular correlation in high-energy nuclear collisions. Nucl. Sci. Tech. 32, 2 (2021). doi: 10.1007/s41365-020-00839-xhttp://doi.org/10.1007/s41365-020-00839-x
J. Allison, Facilities and methods: Geant4-a simulation toolkit. Nucl. Phys. News. 17, 20-24 (2007). doi: 10.1080/10506890701404297http://doi.org/10.1080/10506890701404297
D.F. Heidel, P.W. Marshall, J.A. Pellish et al., Single-event upsets and multiple-bit upsets on a 45 nm SOI SRAM. IEEE Trans. Nucl. Sci. 56, 3499-3504 (2009). doi: 10.1109/TNS.2009.2033796http://doi.org/10.1109/TNS.2009.2033796
Z. He, S.W. Zhao, T.Q. Liu et al., Verification of SEU resistance in 65 nm high-performance SRAM with dual DICE interleaving and EDAC mitigation strategies. Nucl. Sci. Tech. 32, 139 (2021). doi: 10.1007/s41365-021-00979-8http://doi.org/10.1007/s41365-021-00979-8
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution