1.College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China
2.Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Xinxiang 453007, China
3.College of Physics, Henan Normal University, Xinxiang 453007, China
4.Henan Engineering Laboratory of additive intelligent manufacturing, Xinxiang 453007, China
5.Key Laboratory of Interfacial Physics Technology Project, Chinese Academy of Sciences, Shanghai 201800, China
6.Institute of isotope research, Henan Academy of Sciences, Zhengzhou 450000, China
*machunwang@126.com
Scan for full text
Fang Wang, Qiu-Feng Wu, Yu-Rong Jiang, et al. Effect of irradiation on temperature performance of dispersion-compensation no-core cascade optical fiber sensor coated with polydimethylsiloxane film. [J]. Nuclear Science and Techniques 33(9):110(2022)
Fang Wang, Qiu-Feng Wu, Yu-Rong Jiang, et al. Effect of irradiation on temperature performance of dispersion-compensation no-core cascade optical fiber sensor coated with polydimethylsiloxane film. [J]. Nuclear Science and Techniques 33(9):110(2022) DOI: 10.1007/s41365-022-01100-3.
A temperature-measurement device can produce data deviations and can even be damaged in a high-dose radiation environment. To reduce the radiation damage to such a device and improve the temperature-measurement accuracy in a radiation environment, a temperature sensor based on optical-fiber sensing technology is proposed. This sensor has a cascade structure composed of a single-mode fiber (SMF), a dispersion-compensation fiber (DCF), a no-core fiber (NCF), and another SMF (SDNS). The DCF and NCF are coated with a polydimethylsiloxane (PDMS) film, which is a heat-sensitive material with high thermal optical and thermal expansion coefficients. In experiments, PDMS was found to produce an irradiation crosslinking effect after irradiation, which improved the temperature sensitivity of the SDNS sensor. The experimental results showed that within a range of 30-100 ℃, the maximum temperature sensitivity after irradiation was 62.86 pm/℃, and the maximum transmission sensitivity after irradiation was 3.353 × 10,-2, dB/℃, which were 1.22 times and 2.267 times the values before irradiation, respectively. In addition, repeated temperature experiments verified that the SDNS sensor coated with the PDMS film had excellent temperature repeatability. Furthermore, it was found that with an increase in the irradiation intensity, the irradiation crosslinking degree of PDMS increased, and the temperature sensitivity of the sensor was improved. The proposed sensor could potentially be applied to temperature measurement in a nuclear-radiation environment.
60Co-γ irradiationOptical-fiber sensorTemperature performancePDMSRadiation crosslinking
A. Erenler, T. Bayram, Y. Demirel et al., An investigation of gamma ray mass attenuation from 80.1 to 834.86 keV for fabric coating pastes used in textile sector. Nucl. Sci. Tech. 31, 57 (2020). doi: 10.1007/s41365-020-00765-yhttp://doi.org/10.1007/s41365-020-00765-y
X. Pang, H. Zhang, H.L. Seck et al., Inactivation effect of low-energy X-ray irradiation against planktonic and biofilm Pseudomonas fluorescens and its antibacterial mechanism. Int. J. Food Microbiol. 374, 109716 (2022). doi: 10.1016/j.ijfoodmicro.2022.109716http://doi.org/10.1016/j.ijfoodmicro.2022.109716
F. Wang, Y. Xiao, J. Yan et al., Carbon ion irradiation-induced DNA damage evokes cell cycle arrest and apoptosis via the pRb/E2F1/c-Myc signaling pathway in p53-deficient prostate cancer PC-3 cells. Nucl. Sci. Tech. 32, 30 (2021). doi: 10.1007/s41365-021-00861-7http://doi.org/10.1007/s41365-021-00861-7
J. Kumar, G. Singh, M.K. Saxena et al., Development and studies on FBG temperature sensor for applications in nuclear fuel cycle facilities. IEEE Sens. J. 21, 7613-7619 (2021). doi: 10.1109/JSEN.2020.3046244http://doi.org/10.1109/JSEN.2020.3046244
C. Sabatier, M. Aubry, L. Mescia et al., Distributed temperature and strain fiber-based sensing in radiation environment. IEEE T. Nucl. Sci. 68, 1675-1680 (2021). doi: 10.1109/TNS.2021.3070609http://doi.org/10.1109/TNS.2021.3070609
D. Lyu, J. Peng, Q. Huang et al., Radiation-Resistant Optical Fiber Fabry-Perot Interferometer Used for High-Temperature Sensing. IEEE Sens. J. 21, 57-61 (2021). doi: 10.1109/JSEN.2020.2972702http://doi.org/10.1109/JSEN.2020.2972702
P. Wu, L. Wen, Z. Xu et al., Synergistic effects of total ionizing dose and radiated electromagnetic interference on analog-to-digital converter. Nucl. Sci. Tech. 33, 39 (2022). doi: 10.1007/s41365-022-01017-xhttp://doi.org/10.1007/s41365-022-01017-x
D. Jeong, M. Lee, H. Lim et al., Optical filter-embedded fiber-optic radiation sensor for ultra-high dose rate electron beam dosimetry. Sensors-Basel. 21, 5840 (2021). doi: 10.3390/s21175840http://doi.org/10.3390/s21175840
Y. London, K. Sharma, H. Diamandi et al., Opto-mechanical fiber sensing of gamma radiation. J. Lightwave Technol. 39, 6637-6645 (2021). doi: 10.1109/JLT.2021.3102698http://doi.org/10.1109/JLT.2021.3102698
S. Rana, A. Fleming, N. Kandadai et al., Active compensation of radiation effects on optical fibers for sensing applications. Sensors-Basel. 21, 8193 (2021). doi: 10.3390/s21248193http://doi.org/10.3390/s21248193
B. Badamchi, A.A. Simon, M. Mitkova et al., Chalcogenide glass-capped fiber-optic sensor for real-time temperature monitoring in extreme environments. Sensors-Basel. 21, 1616 (2021). doi: 10.3390/s21051616http://doi.org/10.3390/s21051616
F. Esposito, A. Stancalie, C. Negut et al., Comparative investigation of gamma radiation effects on long period gratings and optical power in different optical fibers. J. Lightwave Technol. 37, 4560-4566 (2019). doi: 10.1109/JLT.2019.2910639http://doi.org/10.1109/JLT.2019.2910639
F. Esposito, A. Srivastava, S. Campopiano et al., Radiation effects on long period fiber gratings: A review. Sensors-Basel. 20, 2729 (2020). doi: 10.3390/s20092729http://doi.org/10.3390/s20092729
S. Ju, Y. Kim, K. Linganna et al., Effect of temperature and gamma-ray irradiation on optical characteristics of fiber Bragg grating inscribed radiation-resistant optical fiber. Photonic Sensors. 10, 16-33 (2020). doi: 10.1007/s13320-019-0567-4http://doi.org/10.1007/s13320-019-0567-4
H. Ye, C. Geng, X. Tang et al., Radiation and temperature effect of fiber Bragg grating sensor under Co-60 irradiation. Radiat. Meas. 142, 106546 (2021). doi: 10.1016/j.radmeas.2021.106546http://doi.org/10.1016/j.radmeas.2021.106546
C. Li, W. Yang, M. Wang et al., A review of coating materials used to improve the performance of optical fiber sensors. Sensors-Basel. 20, 4215 (2020). doi: 10.3390/s20154215http://doi.org/10.3390/s20154215
S. Cheng, W. Hu, H. Ye et al., Tapered multicore fiber interferometer for ultra-sensitive temperature sensing with thermo-optical materials. Opt. Express. 29, 35765 (2021). doi: 10.1364/OE.441896http://doi.org/10.1364/OE.441896
D. Yi, F. Liu, Y. Geng et al., High-sensitivity and large-range fiber optic temperature sensor based on PDMS-coated Mach-Zehnder interferometer combined with FBG. Opt. Express. 29, 18624 (2021). doi: 10.1364/OE.428384http://doi.org/10.1364/OE.428384
C. Li, Y. Liu, S. Qu et al., Temperature fiber sensor without cross sensitivity based on the multi-thin-no-thin-multi fiber coated with PDMS. J. Phys. D Applied Phys. 54, 455101 (2021). doi: 10.1088/1361-6463/ac1bd6http://doi.org/10.1088/1361-6463/ac1bd6
Y. Gu, B. Zhang, Z. Guo et al., Radiation-induced cross-linking: a novel avenue to permanent 3D modification of polymeric membranes. Nucl. Sci. Tech. 32, 70 (2021). doi: 10.1007/s41365-021-00905-yhttp://doi.org/10.1007/s41365-021-00905-y
M. Meléndez-Zamudio, A. Villegas, J.A. González-Calderón et al., Study of a polydimethylsiloxane (PDMS) elastomer generated by γ irradiation: Correlation between properties (Thermal and Mechanical) and structure (Crosslink Density Value). J. Inorg. Organomet. P. 27, 622-632 (2017). doi: 10.1007/s10904-017-0503-2http://doi.org/10.1007/s10904-017-0503-2
K.A. Dubey, C.V. Chaudhari, S.K. Suman et al., Synthesis of flexible polymeric shielding materials for soft gamma rays: Physicomechanical and attenuation characteristics of radiation crosslinked polydimethylsiloxane/Bi2O3 composites. Polym. Composite. 37, 756-762 (2016). doi: 10.1002/pc.23232http://doi.org/10.1002/pc.23232
A.P. Munaro, G.P. Da Cunha, J.G. Filgueiras et al., Ageing and structural changes in PDMS rubber investigated by time domain NMR. Polym. Degrad. Stabil. 166, 300-306 (2019). doi: 10.1016/j.polymdegradstab.2019.06.008http://doi.org/10.1016/j.polymdegradstab.2019.06.008
F. Wang, H. Li, X. Wang et al., Temperature and curvature measurement based on low cavity loss FLRD technology. IEEE Sens. J. 22, 2221-2228 (2022). doi: 10.1109/JSEN.2021.3136865http://doi.org/10.1109/JSEN.2021.3136865
X. Fu, R. Ran, Q. Li et al., A sensitivity-enhanced temperature sensor with end-coated PDMS in few mode fiber based on vernier effect. Opt. Commun. 497, 127173 (2021). doi: 10.1016/j.optcom.2021.127173http://doi.org/10.1016/j.optcom.2021.127173
D. Yi, Z. Huo, Y. Geng et al., PDMS-coated no-core fiber interferometer with enhanced sensitivity for temperature monitoring applications. Opt. Fiber Technol. 57, 102185 (2020). doi: 10.1016/j.yofte.2020.102185http://doi.org/10.1016/j.yofte.2020.102185
Y. Hou, J. Wang, X. Wang et al., Simultaneous measurement of pressure and temperature in seawater with PDMS sealed microfiber Mach-Zehnder interferometer. J. Lightwave Technol. 38, 6412-6421 (2020). doi: 10.1109/JLT.2020.3012716http://doi.org/10.1109/JLT.2020.3012716
W. Yang, C. Li, M. Wang et al., The polydimethylsiloxane coated fiber optic for all fiber temperature sensing based on the multithin-multifiber structure. IEEE Sens. J. 21, 51-56 (2021). doi: 10.1109/JSEN.2020.2972292http://doi.org/10.1109/JSEN.2020.2972292
F. Wang, Y. Lu, X. Wang et al., A highly sensitive temperature sensor with a PDMS-coated tapered dispersion compensation fiber structure. Opt. Commun. 497, 127183 (2021). doi: 10.1016/j.optcom.2021.127183http://doi.org/10.1016/j.optcom.2021.127183
C. He, J. Fang, Y. Zhang et al., High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane. Opt. Express. 26, 9686 (2018). doi: 10.1364/OE.26.009686http://doi.org/10.1364/OE.26.009686
F. Wang, K. Pang, T. Ma et al., Folded-tapered multimode-no-core fiber sensor for simultaneous measurement of refractive index and temperature. Optics Laser Technology. 130, 106333 (2020). doi: 10.1016/j.optlastec.2020.106333http://doi.org/10.1016/j.optlastec.2020.106333
F. Wang, L. Zhang, T. Ma et al., A high-sensitivity sensor based on tapered dispersion compensation fiber for curvature and temperature measurement. Opt. Commun. 481, 126534 (2021). doi: 10.1016/j.optcom.2020.126534http://doi.org/10.1016/j.optcom.2020.126534
R. Yan, G. Sang, B. Yin et al., Temperature self-calibrated pH sensor based on GO/PVA-coated MZI cascading FBG. Opt. Express. 29, 13530 (2021). doi: 10.1364/OE.421782http://doi.org/10.1364/OE.421782
W. Yang, R. Pan, X. Yu et al., A high sensitivity asymmetric double tapered fiber interference sensor. Optik. 210, 164495 (2020). doi: 10.1016/j.ijleo.2020.164495http://doi.org/10.1016/j.ijleo.2020.164495
H.M. Eyssa, M. Osman, S.A. Kandil, M.M. Abdelrahman, Effect of ion and electron beam irradiation on surface morphology and optical properties of PVA. Nucl. Sci. Tech. 26, 74-79 (2015). doi: 10.13538/j.1001-8042/nst.26.060306http://doi.org/10.13538/j.1001-8042/nst.26.060306
M.A. Velazco-Medel, L.A. Camacho-Cruz, E. Bucio, Modification of PDMS with acrylic acid and acrylic acid/ethylene glycol dimethacrylate by simultaneous polymerization assisted by gamma radiation. Radiat. Phys. Chem. 171, 108754 (2020). doi: 10.1016/j.radphyschem.2020.108754http://doi.org/10.1016/j.radphyschem.2020.108754
X. Chen, A. Wen, C. Ren et al., Theoretical prediction of radiation-enhanced diffusion behavior in nickel under self-ion irradiation. Nucl. Sci. Tech. 31, 79 (2020). doi: 10.1007/s41365-020-00791-whttp://doi.org/10.1007/s41365-020-00791-w
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution