1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
3.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
*zhenglm2019@mail.tsinghua.edu.cn
Scan for full text
Han Chen, Lian-Min Zheng, Bin Gao, et al. Beam dynamics optimization of very-high-frequency gun photoinjector. [J]. Nuclear Science and Techniques 33(9):116(2022)
Han Chen, Lian-Min Zheng, Bin Gao, et al. Beam dynamics optimization of very-high-frequency gun photoinjector. [J]. Nuclear Science and Techniques 33(9):116(2022) DOI: 10.1007/s41365-022-01105-y.
Very-high-frequency (VHF) gun photoinjectors, capable of producing high-brightness and high-repetition-rate electron bunches, are some of the best electron sources for driving MHz-class repetition-rate free-electron lasers. In this study, the beam dynamics optimization of a VHF gun photoinjector for Shanghai HIgh Repetition Rate X-ray Free Electron Laser and Extreme Light Facility (SHINE) is systematically demonstrated using a genetic algorithm. Through the inclusion of the solenoid geometry as an optimization variable into the genetic algorithm, the optimum projected normalized emittance for 100 pC bunches with bunch length of 1 mm rms is reduced to 0.1 mm mrad for 100% of the particles and 0.075 mm mrad for 95% of the particles, proving that sub-100 nm emittance can be achieved in the SHINE injector using a single-cell Tsinghua University (THU) VHF gun. This emittance fulfills the requirements not only of SHINE and Linac Coherent Light Source (LCLS)-II but also of LCLS-II-High Energy (LCLS-II-HE). We demonstrate that the optimal emittance in the VHF gun injector is reduced via the optimization of the solenoid geometry, thereby reducing solenoid spherical aberration. Through the inclusion of high-order (H.O.) energy spread among the optimization objectives, the H.O. energy spread can be reduced by a factor of nearly six using a high-harmonic cavity despite a 38% emittance growth. Finally, the beam dynamics in the SHINE main accelerator show that reducing the H.O. energy spread in the injector is of great significance to improving compression efficiency and reducing bunch current spike.
VHF gun photoinjectorMulti-objective optimizationEmittanceHigh order energy spread
P. Emma, J. Frisch, Z. Huang, et al., in Proceedings of FEL2014, Basel, Switzerland, Linear accelerator design for the lcls-ii fel facility. 2014, p. 743
N. Huang, H. Deng, B. Liu, et al., in 39th Free Electron Laser Conf.(FEL’19), Hamburg, Germany, 26-30 August 2019, Physical design and fel performance study for fel-iii beamline of shine. JACOW Publishing, Geneva, Switzerland, 2019, pp. 199-202
T. Raubenheimer, in Proc. 60th ICFA Advanced Beam Dynamics Workshop (FLS’18),Shanghai, China, 5-9 March 2018, The LCLS-II-HE, A High Energy Upgrade of the LCLS-II. No. 60 in ICFA Advanced Beam Dynamics Workshop, (JACoW Publishing, Geneva, Switzerland, 2018), pp. 6-11. doi: 10.18429/JACoW-FLS2018-MOP1WA02http://doi.org/10.18429/JACoW-FLS2018-MOP1WA02
D. Li, H. Feng, D. Filippetto, et al., in Proc. 10th International Particle Accelerator Conference (IPAC’19), Melbourne, Australia, 19-24 May 2019, Recent Progress on the Design of Normal Conducting APEX-II VHF CW Electron Gun. No. 10 in International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2019), pp. 1891-1894. doi: 10.18429/JACoW-IPAC2019-TUPRB097http://doi.org/10.18429/JACoW-IPAC2019-TUPRB097
F. Sannibale, D. Filippetto, M. Johnson, et al., Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology. Phys. Rev. Accel. Beams 20, 113402 (2017). doi: 10.1103/PhysRevAccelBeams.20.113402http://doi.org/10.1103/PhysRevAccelBeams.20.113402
K. Floettmann, Astra: A space charge tracking algorithm. http://www.desy.de/mpyflohttp://www.desy.de/mpyflo
A. Adelmann, C. Kraus, Y. Ineichen, et al., The OPAL (Object Oriented Parallel Accelerator Library) Framework. Tech. Rep. PSI-PR-08-02, Paul Scherrer Institut (2008)
J. Qiang, S. Lidia, R.D. Ryne, et al., Three-dimensional quasistatic model for high brightness beam dynamics simulation. Phys. Rev. ST Accel. Beams 9, 044204 (2006). doi: 10.1103/PhysRevSTAB.9.044204http://doi.org/10.1103/PhysRevSTAB.9.044204
General Particle Tracer (GPT) code., http://www.pulsar.nl/gpt/http://www.pulsar.nl/gpt/
L. Zheng, Z. Li, Y. Du, et al., in 10th Int. Partile Accelerator Conf.(IPAC’19), Melbourne, Australia, 19-24 May 2019, Design of a 217 mhz vhf gun at tsinghua university. JACOW Publishing, Geneva, Switzerland, 2019, pp. 2050-2053
R.P. Wells, W. Ghiorso, J. Staples, et al., Mechanical design and fabrication of the vhf-gun, the berkeley normal-conducting continuous-wave high-brightness electron source. Review of Scientific Instruments 87, 023302 (2016). doi: 10.1063/1.4941836http://doi.org/10.1063/1.4941836
L. Zheng, Y. Du, Z. Zhang, et al., Development of s-band photocathode rf guns at tsinghua university. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 834, 98-107 (2016). doi: 10.1016/j.nima.2016.07.015http://doi.org/10.1016/j.nima.2016.07.015
H. Xu, J. Shi, Y. Du, et al., Development of an l-band photocathode rf gun at tsinghua university. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 985, 164675 (2021). doi: 10.1016/j.nima.2020.164675http://doi.org/10.1016/j.nima.2020.164675
H. Chen, L. Zheng, P. Huang, et al., Analysis of slice transverse emittance evolution in a very-high-frequency gun photoinjector. Phys. Rev. Accel. Beams 24, 124402 (2021). doi: 10.1103/PhysRevAccelBeams.24.124402http://doi.org/10.1103/PhysRevAccelBeams.24.124402
I.V. Bazarov, C.K. Sinclair, Multivariate optimization of a high brightness dc gun photoinjector. Phys. Rev. ST Accel. Beams 8, 034202 (2005). doi: 10.1103/PhysRevSTAB.8.034202http://doi.org/10.1103/PhysRevSTAB.8.034202
I.V. Bazarov, A. Kim, M.N. Lakshmanan, et al., Comparison of dc and superconducting rf photoemission guns for high brightness high average current beam production. Physical Review Special Topics - Accelerators and Beams 14, 1-12 (2011). doi: 10.1103/PhysRevSTAB.14.072001http://doi.org/10.1103/PhysRevSTAB.14.072001
C.M. Pierce, M.B. Andorf, E. Lu, et al., Low intrinsic emittance in modern photoinjector brightness. Physical Review Accelerators and Beams 23, 70101 (2020). doi: 10.1103/PhysRevAccelBeams.23.070101http://doi.org/10.1103/PhysRevAccelBeams.23.070101
R. Hajima, R. Nagai, Multiparameter optimization of an erl injector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 557, 103-105 (2006). doi: 10.1016/j.nima.2005.10.060http://doi.org/10.1016/j.nima.2005.10.060
L. Cultrera, C. Gulliford, A. Bartnik, et al., Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light. Applied Physics Letters 108, 134105 (2016). doi: 10.1063/1.4945091http://doi.org/10.1063/1.4945091
S. Schubert, M. Ruiz-Osés, I. Ben-Zvi, et al., Bi-alkali antimonide photocathodes for high brightness accelerators. APL Materials 1, 032119 (2013). doi: 10.1063/1.4821625http://doi.org/10.1063/1.4821625
W. Decking, S. Abeghyan, P. Abramian, et al., A mhz-repetition-rate hard x-ray free-electron laser driven by a superconducting linear accelerator. Nature Photonics 14, 1-7 (2020). doi: 10.1038/s41566-020-0607-zhttp://doi.org/10.1038/s41566-020-0607-z
C.J. Milne, T. Schietinger, M. Aiba, et al., SwissFEL: The Swiss X-ray Free Electron Laser. Applied Sciences 7, 720 (2017). doi: 10.3390/app7070720http://doi.org/10.3390/app7070720
P. Emma, R. Akre, J. Arthur, et al., First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics 4, 641-647 (2010). doi: 10.1038/nphoton.2010.176http://doi.org/10.1038/nphoton.2010.176
C.F. Papadopoulos, D. Filippetto, F. Sannibale, et al., in Proc. 5th International Particle Accelerator Conference (IPAC’14), Dresden, Germany, June 15-20, 2014, RF Injector Beam Dynamics Optimization for LCLS-II. No. 5 in International Particle Accelerator Conference, (JACoW, Geneva, Switzerland, 2014), pp. 1974-1976. doi: 10.18429/JACoW-IPAC2014-WEPRO015http://doi.org/10.18429/JACoW-IPAC2014-WEPRO015
M. Cornacchia, Linac coherent light source (lcls) design study report. Tech. rep., Stanford Linear Accelerator Center, Menlo Park, CA (US) (1998)
J.J. Guo, Q. Gu, M. Zhang, et al., Power losses caused by longitudinal homs in 1.3-ghz cryomodule of shine. Nuclear Science and Techniques 30, 105 (2019). doi: 10.1007/s41365-019-0628-9http://doi.org/10.1007/s41365-019-0628-9
Z.Y. Ma, S.J. Zhao, X.M. Liu, et al., High rf power tests of the first 1.3 ghz fundamental power coupler prototypes for the shine project. Nuclear Science and Techniques 33, 10 (2022). doi: 10.1007/s41365-022-00984-5http://doi.org/10.1007/s41365-022-00984-5
K. Deb, A. Pratap, S. Agarwal, et al., A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6, 182-197 (2002). doi: 10.1109/4235.996017http://doi.org/10.1109/4235.996017
C.M. Silva, E.C. Biscaia, in European Symposium on Computer Aided Process Engineering-12, Multiobjective dynamic optimization of semi-continuous processes. Vol. 10 of Computer Aided Chemical Engineering, (Elsevier, 2002), pp. 967-972 doi: 10.1016/S1570-7946(02)80189-4http://doi.org/10.1016/S1570-7946(02)80189-4
D.H. Dowell, Sources of emittance in rf photocathode injectors: Intrinsic emittance, space charge forces due to non-uniformities, rf and solenoid effects. arXiv preprint arXiv:1610.01242.
V. Kumar, D. Phadte, C. Patidar, in Proceedings of the DAE-BRNS Indian particle accelerator conference, A simple formula for emittance growth due to spherical aberration in a solenoid lens. 2011
S. Zhao, S. Huang, L. Lin, et al., Longitudinal phase space improvement of a continuous-wave photoinjector toward x-ray free-electron laser application. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1018, 165796 (2021). doi: 10.1016/j.nima.2021.165796http://doi.org/10.1016/j.nima.2021.165796
T.K. Charles, D.M. Paganin, A. Latina, et al., Current-horn suppression for reduced coherent-synchrotron-radiation-induced emittance growth in strong bunch compression. Phys. Rev. Accel. Beams 20, 030705 (2017). doi: 10.1103/PhysRevAccelBeams.20.030705http://doi.org/10.1103/PhysRevAccelBeams.20.030705
T.K. Charles, D.M. Paganin, R.T. Dowd, Caustic-based approach to understanding bunching dynamics and current spike formation in particle bunches. Phys. Rev. Accel. Beams 19, 104402 (2016). doi: 10.1103/PhysRevAccelBeams.19.104402http://doi.org/10.1103/PhysRevAccelBeams.19.104402
Y. Ding, K.L. Bane, W. Colocho, et al., Beam shaping to improve the free-electron laser performance at the linac coherent light source. Phys. Rev. Accel. Beams 19, 100703 (2016). doi: 10.1103/PhysRevAccelBeams.19.100703http://doi.org/10.1103/PhysRevAccelBeams.19.100703
Y.X. Zhang, J.F. Chen, D. Wang, Rf design optimization for the shine 3.9 ghz cavity. Nuclear Science and Techniques 31, 73 (2020). doi: 10.1007/s41365-020-00772-zhttp://doi.org/10.1007/s41365-020-00772-z
Y.W. Gong, M. Zhang, W.J. Fan, et al., Beam performance of the shine dechirper. Nuclear Science and Techniques 32, 29 (2021). doi: 10.1007/s41365-021-00860-8http://doi.org/10.1007/s41365-021-00860-8
Z. Wang, C. Feng, D.Z. Huang, et al., Nonlinear energy chirp compensation with corrugated structures. Nuclear Science and Techniques 29, 175 (2018). doi: 10.1007/s41365-018-0512-zhttp://doi.org/10.1007/s41365-018-0512-z
K. Bane, P. Emma, in Proceedings of the 2005 Particle Accelerator Conference, Litrack: a fast longitudinal phase space tracking code with graphical user interface. IEEE, 2005, pp. 4266-4268
P. Bolton, J. Clendenin, D. Dowell, et al., Photoinjector design for the lcls. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 483, 296-300 (2002). doi: 10.1016/S0168-9002(02)00331-5http://doi.org/10.1016/S0168-9002(02)00331-5
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution