1.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2.Key Laboratory of Particle Acceleration Physics and Technology, Chinese Academy of Sciences, Beijing 100049, China
3.Center for Superconducting RF and Cryogenics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
4.University of Chinese Academy of Sciences, Beijing 100049, China
shapeng@ihep.ac.cn,
panwm@ihep.ac.cn
Scan for full text
Peng Sha, Wei-Min Pan, Song Jin, et al. Ultrahigh accelerating gradient and quality factor of CEPC 650 MHz superconducting radio-frequency cavity. [J]. Nuclear Science and Techniques 33(10):125(2022)
Peng Sha, Wei-Min Pan, Song Jin, et al. Ultrahigh accelerating gradient and quality factor of CEPC 650 MHz superconducting radio-frequency cavity. [J]. Nuclear Science and Techniques 33(10):125(2022) DOI: 10.1007/s41365-022-01109-8.
Two 650 MHz single-cell superconducting radio-frequency (SRF) cavities used for the Circular Electron Positron Collider (CEPC) were studied to achieve a high accelerating gradient (,E,acc,) and high intrinsic quality factor (,Q,0,). The 650 MHz single-cell cavities were subjected to a combination of buffered chemical polishing (BCP) and electropolishing (EP), and their ,E,acc, exceeded 40 MV/m. Such a high ,E,acc, may result from the cold EP with more uniform removal. BCP is easy, cheap, and rough, whereas EP is complicated, expensive, and precise. Therefore, the combination of BCP and EP investigated in this study is suitable for surface treatments of mass SRF cavities. Medium temperature (mid-T) furnace baking was also conducted, which demonstrated an ultrahigh ,Q,0, of 8 × 10,10, at 22 MV/m for both cavities, and an extremely low BCS resistance (,R,BCS,) of ~ 1.0 nΩ was achieved at 2.0 K.
SRF cavityAccelerating gradientQuality factorElectropolishingVertical test
H. Padamsee, 50 years of success for SRF accelerators—a review. Supercond. Sci. Technol. 30, 053003 (2017). doi: 10.1088/1361-6668/aa6376http://doi.org/10.1088/1361-6668/aa6376
P. Sha, J.K. Hao, W.M. Pan et al., Nitrogen doping/infusion of 650 MHz cavities for CEPC. Nucl. Sci. Tech. 32, 45 (2021). doi: 10.1007/s41365-021-00881-3http://doi.org/10.1007/s41365-021-00881-3
T. Dohmae, K. Umemori, M. Yamanaka et al., Investigation of in-house superconducting radio-frequency 9-cell cavity made of large grain niobium at KEK. Nucl. Instrum. Methods Phys. Res. A 875, 1-9 (2017). doi: 10.1016/j.nima.2017.08.050http://doi.org/10.1016/j.nima.2017.08.050
X.Y. Pu, H.T. Hou, Y. Wang et al., Frequency sensitivity of the passive third harmonic superconducting cavity for SSRF. Nucl. Sci. Tech. 31, 31 (2020). doi: 10.1007/s41365-020-0732-xhttp://doi.org/10.1007/s41365-020-0732-x
D. Reschke, V. Gubarev, J. Schaffran et al., Performance in the vertical test of the 832 nine-cell 1.3 GHz cavities for the European X-ray Free Electron Laser. Phys. Rev. Accel. Beams 20, 042004 (2017). doi: 10.1103/PhysRevAccelBeams.20.042004http://doi.org/10.1103/PhysRevAccelBeams.20.042004
Y.X. Zhang, J.F. Chen, D. Wang, RF design optimization for the SHINE 3.9 GHz cavity. Nucl. Sci. Tech. 31, 73 (2020). doi: 10.1007/s41365-020-00772-zhttp://doi.org/10.1007/s41365-020-00772-z
D. Gonnella, S. Aderhold, A. Burrill et al., Industrialization of the nitrogen-doping preparation for SRF cavities for LCLS-II. Nucl. Instrum. Methods Phys. Res. A 883, 143-150 (2018). doi: 10.1016/j.nima.2017.11.047http://doi.org/10.1016/j.nima.2017.11.047
R. Garoby, A. Vergara, H. Danared et al., The European spallation source design. Phys. Scr. 93, 014001 (2018), doi: 10.1088/1402-4896/aa9bffhttp://doi.org/10.1088/1402-4896/aa9bff
K. McGee, S. Kim, K. Elliott et al., Medium-velocity superconducting cavity for high accelerating gradient continuous-wave hadron linear accelerators. Phys. Rev. Accel. Beams 24, 112003 (2016). doi: 10.1103/PhysRevAccelBeams.24.112003http://doi.org/10.1103/PhysRevAccelBeams.24.112003
S.-H. Kim, R. Afanador, D. Barnhart et al., Overview of ten-year operation of the superconducting linear accelerator at the spallation neutron source. Nucl. Instrum. Methods Phys. Res. A 852, 20-32 (2017). doi: 10.1016/j.nima.2017.02.009http://doi.org/10.1016/j.nima.2017.02.009
F. Yan, H.P. Geng, C. Meng et al., Commissioning experiences with the spoke-based CW superconducting proton linac. Nucl. Sci. Tech. 32, 105 (2021). doi: 10.1007/s41365-021-00950-7http://doi.org/10.1007/s41365-021-00950-7
M. Martinello, D. Bice, C. Boffo et al., Q-factor optimization for high-beta 650 MHz cavities for PIP-II. J. Appl. Phys. 130, 174501 (2021). doi: 10.1063/5.0068531http://doi.org/10.1063/5.0068531
K. Saito, H. Inoue, E. Kako et al., Superiority of electropolishing over chemical polishing on high gradients. in: Proceedings of the 1997 Workshop on RF Superconductivity, Abano Terme, Padova, Italy, 1997, p. 795-813
L. Lilje, D. Reschke, K. Twarowski et al., Electropolishing and in-situ baking of 1.3 GHz niobium cavities. in: Proceedings of the 1999 Workshop on RF Superconductivity, La Fonda Hotel, Santa Fe, New Mexico, USA, 1999, p. 74-76
A. Grassellino, A. Romanenko, D. Sergatskov et al., Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures. Supercond. Sci. Technol. 26, 102001 (2013). doi: 10.1088/0953-2048/26/10/102001http://doi.org/10.1088/0953-2048/26/10/102001
S. Posen, A. Romanenko, A. Grassellino et al., Ultralow surface resistance via vacuum heat treatment of superconducting radio-frequency cavities. Phys. Rev. Applied 13, 014024 (2020). doi: 10.1103/PhysRevApplied.13.014024http://doi.org/10.1103/PhysRevApplied.13.014024
H. Ito, H. Araki, K. Takahashi et al., Influence of furnace baking on Q-E behavior of superconducting accelerating cavities. Prog. Theor. Exp. Phys. 2021, 071G01 (2021). doi: 10.1093/ptep/ptab056http://doi.org/10.1093/ptep/ptab056
R.L. Geng, G.V. Eremeev, H. Padamsee et al., High gradient studies for ILC with single-cell re-entrant shape and elliptical shape cavities made of fine-grain and large-grain niobium. in: Proceedings of PAC07, Albuquerque, New Mexico, USA, 2007, p. 2337-2339
T. Kubo, Y. Ajima, H. Inoue et al., In-house production of a large-grain single-cell cavity at cavity fabrication facility and results of performance tests, in: Proceedings of IPAC2014, Dresden, Germany, 2014, p. 2519-2521.
S. Posen, A. Cravatta, M. Checchin et al., High gradient performance and quench behavior of a verification cryomodule for a high energy continuous wave linear accelerator. Phys. Rev. Accel. Beams 25, 042001 (2022). doi: 10.1103/PhysRevAccelBeams.25.042001http://doi.org/10.1103/PhysRevAccelBeams.25.042001
F.S. He, W.M. Pan, P. Sha et al., Medium-temperature furnace baking of 1.3 GHz 9-cell superconducting cavities at IHEP. Supercond. Sci. Technol. 34, 095005 (2021). doi: 10.1088/1361-6668/ac1657http://doi.org/10.1088/1361-6668/ac1657
The CEPC Study Group, CEPC conceptual design report: Volume 1 - accelerator, 2018, arXiv:1809.00285.
J. Zhai, D. Gong, H. Zheng et al., Design of CEPC superconducting RF system. Internat. J. Modern Phys. A 34, 1940006 (2019). doi: 10.1142/S0217751X19400062http://doi.org/10.1142/S0217751X19400062
S. Jin, P. Sha, W. Pan et al., Development and vertical tests of CEPC 650 MHz single-cell cavities with high gradient. Materials 14, 7654 (2021). doi: 10.3390/ma14247654http://doi.org/10.3390/ma14247654
T. Huang, W. Pan, G. Wang et al., The development of the 499.8 MHz superconducting cavity system for BEPCII. Nucl. Instrum. Methods Phys. Res. A 1013, 165649 (2021). doi: 10.1016/j.nima.2021.165649http://doi.org/10.1016/j.nima.2021.165649
Y. Huang, L. Liu, T. Jiang et al., 650 MHz elliptical superconducting RF cavities for CiADS Project. Nucl. Instrum. Methods Phys. Res. A 988, 164906 (2021). doi: 10.1016/j.nima.2020.164906http://doi.org/10.1016/j.nima.2020.164906
F. Schlander, C. Darve, N. Elias et al., The superconducting accelerator for the ESS project, in: Proceedings of the SRF2017, Lanzhou, China, July 2017, pp. 24-28
J. Knobloch, R.L. Geng, M. Liepe et al., High-field Q slope in superconducting cavities due to magnetic field enhancement at grain boundaries. in: Proceedings of the 1999 Workshop on RF Superconductivity, La Fonda Hotel, Santa Fe, New Mexico, USA, 1999, p. 77-91.
T. Kubo, Magnetic field enhancement at a pit on the surface of a superconducting accelerating cavity. Prog. Theor. Exp. Phys. 2015, 073G01 (2015). doi: 10.1093/ptep/ptv088http://doi.org/10.1093/ptep/ptv088
C. Xu, C.E. Reece, M.J. Kelley, Simulation of nonlinear superconducting rf losses derived from characteristic topography of etched and electropolished niobium surfaces. Phys. Rev. Accel. Beams 19, 033501 (2016). doi: 10.1103/PhysRevAccelBeams.19.033501http://doi.org/10.1103/PhysRevAccelBeams.19.033501
A. Romanenko, A. Grassellino, A.C. Crawford et al., Ultra-high quality factors in superconducting niobium cavities in ambient magnetic fields up to 190 mG. Appl. Phys. Lett. 105, 234103 (2014). doi: 10.1063/1.4903808http://doi.org/10.1063/1.4903808
S. Huang, T. Kubo, R.L. Geng, Dependence of trapped-flux-induced surface resistance of a large-grain Nb superconducting radio-frequency cavity on spatial temperature gradient during cooldown through Tc. Phys. Rev. Accel. Beams 19, 082001 (2016). doi: 10.1103/PhysRevAccelBeams.19.082001http://doi.org/10.1103/PhysRevAccelBeams.19.082001
H. Padamsee, RF superconductivity: science, technology and applications. (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009), ISBN: 978-3-527-40572-5.
T. Kubo and A. Gurevich, Field-dependent nonlinear surface resistance and its optimization by surface nanostructuring in superconductors. Phys. Rev. B 100, 064522 (2019). doi: 10.1103/PhysRevB.100.064522http://doi.org/10.1103/PhysRevB.100.064522
A. Gurevich, T. Kubo, J. A. Sauls, Challenges and opportunities of srf theory for next generation particle accelerators. arXiv:2203.08315.
M. Martinello, M. Checchin, A. Romanenko et al., Field-enhanced superconductivity in high-frequency niobium accelerating cavities. Phys. Rev. Lett. 121, 224801 (2018). doi: 10.1103/PhysRevLett.121.224801http://doi.org/10.1103/PhysRevLett.121.224801
F. Furuta, D.J. Bice, A.C. Crawford et al., Fermilab EP facility improvement. in Proceedings of SRF’19, Dresden, Germany, 2019. https://accelconf.web.cern.ch/srf2019/papers/tup022.pdfhttps://accelconf.web.cern.ch/srf2019/papers/tup022.pdf
M. Checchin, LCLS-II investigation of failed LCLS-II HE prototype cavities EP analysis, TTC 2020, Geneva, Switzerland, 2020.
0
Views
8
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution