1.Institute of High Energy Physics, CAS, Yuquan Road 19B, Beijing 100049, China
2.University of Chinese Academy of Sciences, CAS, Yuquan Road 19A, Beijing 100049, China
3.Spallation Neutron Source Science Center, Dongguan 523803, China
4.Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
tangjy@ihep.ac.cn
Scan for full text
Li-Jiao Wang, Tanaji Sen, Jing-Yu Tang, et al. Beam-beam effects and mitigation in a future proton-proton collider. [J]. Nuclear Science and Techniques 33(10):130(2022)
Li-Jiao Wang, Tanaji Sen, Jing-Yu Tang, et al. Beam-beam effects and mitigation in a future proton-proton collider. [J]. Nuclear Science and Techniques 33(10):130(2022) DOI: 10.1007/s41365-022-01112-z.
The beam-beam effects in a hadron collider with an unprecedented energy scale were studied. These effects are strongly related to the attainable luminosity of the collider. Long-range interactions were identified as the major factor limiting the dynamic aperture, which is strongly dependent on the crossing angle,β*, and bunch population. Different mitigation methods of the beam-beam effects were addressed, with a focus on the compensation of long-range interactions by electric current wires. The CEPC-SPPC project is a two-stage large circular collider, with a first-stage circular electron-positron collider (CEPC) and a second-stage super proton-proton collider (SPPC). The design of the SPPC aims to achieve a center-of-mass energy of 75 TeV and peak luminosity of approximately 1 × 10,35, cm,-2, s,-1,. We studied the beam-beam effects in the SPPC and tested the effectiveness of the mitigation methods. We found that with compensation using electric-current wires, the dynamic aperture is at an acceptable level. Moreover, considering the significant emittance damping in this future proton-proton collider, the beam-beam effects and compensation are more complicated and are studied using long-term tracking. It was found that with a smaller emittance, the head-on interactions with a crossing angle become more prominent in reducing the beam stability, and combined head-on and long-range compensation are needed to improve the beam quality. When the reduction in population owing to burn-off was included, it was found that the coupling between the transverse and longitudinal planes at smaller emittance is the main driving source of the instabilities. Thus, crab cavities and emittance control are also necessary than just the compensation of the long-range interactions to improve the beam stability. This study serves as an example for studying the beam-beam effects in future proton-proton colliders.
Particle colliderBeam-beam effectsLuminosityTune footprintDynamic aperture
L. R. Evans, J. Gareyte, Beam-beam and single beam effects in the SPS proton-antiproton collider. IEEE T. Nucl. Sci. 30, 2397-2399 (1983). doi: 10.1109/TNS.1983.4332826http://doi.org/10.1109/TNS.1983.4332826
M. Harrison, R. Schmidt, The performance of proton antiproton colliders. in: Proc. 2nd European Particle Accelerator Conference, Nice, France, 55-59 (1990). https://inspirehep.net/files/0d541cfdd986e009a2147bee4505d9c6https://inspirehep.net/files/0d541cfdd986e009a2147bee4505d9c6
Y. Papaphilippou, F. Zimmermann, Weak-strong beam-beam simulations for the Large Hadron Collider. Phys. Rev. ST Accel. Beams 2, 104001 (1999). doi: 10.1103/PhysRevSTAB.2.104001http://doi.org/10.1103/PhysRevSTAB.2.104001
T. Sen, B. Erdelyi, M. Xiao et al., Beam-beam effects at the Fermilab Tevatron: Theory. Phys. Rev. ST Accel. Beams 7, 041001 (2004). doi: 10.1103/PhysRevSTAB.7.041001http://doi.org/10.1103/PhysRevSTAB.7.041001
L.L. Zhu, B. Wang, M. Wang et al. Energy and centrality dependence of light nuclei production in relativistic heavy-ion collisions. Nucl. Sci. Tech. 33, 45 (2022). doi: 10.1007/s41365-022-01028-8http://doi.org/10.1007/s41365-022-01028-8
M. Wang, J.Q. Tao, H. Zheng et al. Number-of-constituent-quark scaling of elliptic flow: a quantitative study. Nucl. Sci. Tech. 33, 37 (2022). doi: 10.1007/s41365-022-01019-9http://doi.org/10.1007/s41365-022-01019-9
H. Wang, J.H. Chen, Anisotropy flows in Pb-Pb collisions at LHC energies from parton scatterings with heavy quark trigger. Nucl. Sci. Tech. 33, 15 (2022). doi: 10.1007/s41365-022-00999-yhttp://doi.org/10.1007/s41365-022-00999-y
J.Y. Tang, J.S. Berg, W.P. Chai et al., Concept for a future super proton-proton Collider. (2015). https://arxiv.org/abs/1507.03224https://arxiv.org/abs/1507.03224
J. Q. Yang, Y. Zou, J. Y. Tang, Collimation method studies for next-generation hadron colliders. Phys. Rev. Accel. Beams 22, 023002 (2019). doi: 10.1103/PhysRevAccelBeams.22.023002http://doi.org/10.1103/PhysRevAccelBeams.22.023002
H. J. Kim, T. Sen, Beam-beam simulation code BBSIM for particle accelerators. Nucl. Instrum. Methods Phys. Res. A 642, 25-35 (2011). doi: 10.1016/j.nima.2011.03.059http://doi.org/10.1016/j.nima.2011.03.059
Y. Papaphilippou, F. Zimmermann, Estimates of diffusion due to long-range beam-beam collisions. Phys. Rev. ST Accel. Beams 5, 074001 (2002). doi: 10.1103/PhysRevSTAB.5.074001http://doi.org/10.1103/PhysRevSTAB.5.074001
V. Shiltsev, Y. Alexahin, V. Lebedev et al., Beam-beam effects in the Tevatron, Phys. Rev. ST Accel. Beams 8, 101001 (2005). doi: 10.1103/PhysRevSTAB.8.101001http://doi.org/10.1103/PhysRevSTAB.8.101001
J. P. Koutchouk, G. Sterbini, F. Zimmermann, Long-range beam-beam compensation in the LHC. International Committee for Future Accelerators, ICFA, Beam Dynamics Newsletter No. 52, 81-95 (2010). http://cds.cern.ch/record/1289711http://cds.cern.ch/record/1289711
D. Banfi, J. Barranco Garcia, T. Pieloni, Dynamic aperture studies for HL-LHC with beam-beam effects. CERN-ACC-NOTE-2017-0035 (2017). http://cds.cern.ch/record/2263345?ln=zh_CNhttp://cds.cern.ch/record/2263345?ln=zh_CN
Y. Nosochkov, D. M. Ritson, The provision of IP crossing angles for the SSC. in: Proc. Particle Accelerator Conference, Washington, DC, USA, 125-127 (1993). https://inspirehep.net/files/54796c1b0cebbc83ef4676311be7f5ebhttps://inspirehep.net/files/54796c1b0cebbc83ef4676311be7f5eb
O. Brüning, W. Herr, R. Ostojic, A beam separation and collision scheme for IP1 and IP5 at the LHC for optics version 6.1. LHC Project Report 315 (1999). http://cds.cern.ch/record/407317?ln=zh_CNhttp://cds.cern.ch/record/407317?ln=zh_CN
F. M´eot, Crossing Angle Induced Dispersion in LHC. FERMILAB-TM- 2001 (1997). https://lss.fnal.gov/archive/1997/tm/TM-2001.pdfhttps://lss.fnal.gov/archive/1997/tm/TM-2001.pdf
A. Piwinski, Limitation of the Luminosity by Satellite Resonances. DESY 77/18 (1977). doi: 10.3204/PUBDB-2017-12208http://doi.org/10.3204/PUBDB-2017-12208
T. Sen, Crossing angle option for HERA. DESY-HERA-96-02 (1996). http://cds.cern.ch/record/299368?ln=zh_CNhttp://cds.cern.ch/record/299368?ln=zh_CN
F. Antoniou, Y. Papaphilippou, Analytical considerations for linear and nonlinear optimization of the theoretical minimum emittance cells: Application to the Compact Linear Collider predamping rings. Phys. Rev. ST Accel. Beams 17, 064002 (2014). doi: 10.1103/PhysRevSTAB.17.064002http://doi.org/10.1103/PhysRevSTAB.17.064002
A.W. Chao, Beam-beam instability, SLAC-PUB-3179 (1983). http://www.slac.stanford.edu/pubs/slacpubs/3000/slac-pub-3179.pdfhttp://www.slac.stanford.edu/pubs/slacpubs/3000/slac-pub-3179.pdf
J. P. Koutchouk, Principle of a correction of the long-range beam-beam effects in LHC using electromagnetic lenses. LHC Project Note 223 (2000). http://cds.cern.ch/record/692058?ln=zh_CNhttp://cds.cern.ch/record/692058?ln=zh_CN
U. Dorda, Compensation of long-range beam-beam interaction at the CERN LHC. CERN-THESIS-2008-055 (2008). http://cds.cern.ch/record/1114782?ln=zh_CNhttp://cds.cern.ch/record/1114782?ln=zh_CN
B. Erdelyi, T Sen, Compensation of beam-beam effects in the Tevatron with wires. FERMILAB-TM-2268 (2004). https://inspirehep.net/literature/662654https://inspirehep.net/literature/662654
E. Tsyganov, R. Meinke, W. Nexsen et al., Compensation of the beam-beam effect in proton-proton colliders. SSCL Report No.519 (1993). https://inspirehep.net/literature/359786https://inspirehep.net/literature/359786
E. Tsyganov, A. Taratin, A. Zinchenko, Compensation of space charge effect at beam-beam interactions in proton-proton colliders. JINR-E9-96-4 (1996). https://inspirehep.net/literature/420296https://inspirehep.net/literature/420296
Y. Luo, W. Fischer, N. P. Abreu et al., Six-dimensional weak-strong simulation of head-on beam-beam compensation in the Relativistic Heavy Ion Collider. Phys. Rev. ST Accel. Beams 15, 051004 (2012). doi: 10.1103/PhysRevSTAB.15.051004http://doi.org/10.1103/PhysRevSTAB.15.051004
V. Shiltsev, V. Danilov, D. Finley et al., Considerations on compensation of beam-beam effects in the Tevatron with electron beams. Phys. Rev. ST Accel. Beams 2, 071001 (1999). doi: 10.1103/PhysRevSTAB.2.071001http://doi.org/10.1103/PhysRevSTAB.2.071001
J. Y. Tang, Design concept for a future super proton-proton collider. Frontiers Phys. 10, 828878 (2022). doi: 10.3389/fphy.2022.828878http://doi.org/10.3389/fphy.2022.828878
Z.X. Song, W.D. Deng, G. de Lentdecker et al., Study of the retina algorithm on FPGA for fast tracking. Nucl. Sci. Tech. 30, 127 (2019). doi: 10.1007/s41365-019-0643-xhttp://doi.org/10.1007/s41365-019-0643-x
D. Pellegrini, F. Antoniou, S. Fartoukh et al., Multiparametric response of the LHC Dynamic Aperture in presence of beam-beam effects. in: Proc. 8th International Particle Accelerator Conference, Copenhagen, Denmark, 2051-2054 (2017). doi: 10.1088/1742-6596/874/1/012006http://doi.org/10.1088/1742-6596/874/1/012006
A. Piwinski, Satellite resonances due to the beam-beam interaction. IEEE T. Nucl. Sci. 24, 1408-1410 (1977). doi: 10.1109/TNS.1977.4328960http://doi.org/10.1109/TNS.1977.4328960
S. Fartoukh, A. Valishev, Y. Papaphilippou et al, Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC. Phys. Rev. ST Accel. Beams 18, 121001 (2015). doi: 10.1103/PhysRevSTAB.18.121001http://doi.org/10.1103/PhysRevSTAB.18.121001
L.J. Wang, T. Sen, Weak-strong simulation of beam-beam effects in super proton-proton collider. in: Proc. North American Particle Accelerator Conference, Lansing, MI, USA, 22-25 (2019). doi: 10.18429/JACoW-NAPAC2019-MOYBA5http://doi.org/10.18429/JACoW-NAPAC2019-MOYBA5
M. Benedikt, D. Schulte, F. Zimmermann, Optimizing integrated luminosity of future hadron colliders. Phys. Rev. ST Accel. Beams 18, 101002 (2015). doi: 10.1103/PhysRevSTAB.18.101002http://doi.org/10.1103/PhysRevSTAB.18.101002
J. P. Koutchouk, for the LHC Team, The LHC Dynamic Aperture. in: Proc. Particle Accelerator Conference, New York, 372-376 (1999). https://inspirehep.net/literature/499741https://inspirehep.net/literature/499741
L. J. Wang, J. Y. Tang, Luminosity optimization and leveling in the Super Proton-Proton Collider. Radiat. Detect. Technol. Meth. 5, 245-254 (2021). doi: 10.1007/s41605-020-00233-6http://doi.org/10.1007/s41605-020-00233-6
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution