1.Fundamental Science On Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001, China
2.Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084, China
3.Purdue University, West Lafayette, IN 47907, USA
* haochen.heu@163.com
Scan for full text
Yan-Ling Zhu, Xing-Wu Chen, Chen Hao, et al. Implementation of high-fidelity neutronics and thermal-hydraulic coupling calculations in HNET. [J]. Nuclear Science and Techniques 33(11):146(2022)
Yan-Ling Zhu, Xing-Wu Chen, Chen Hao, et al. Implementation of high-fidelity neutronics and thermal-hydraulic coupling calculations in HNET. [J]. Nuclear Science and Techniques 33(11):146(2022) DOI: 10.1007/s41365-022-01120-z.
To perform nuclear reactor simulations in a more realistic manner, the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions. For simplicity, efficiency, and robustness, the matrix-free Newton/Krylov (MFNK) method was applied to the steady-state coupling calculation. In addition, the optimal perturbation size was adopted to further improve the convergence behavior of the MFNK. For the transient coupling simulation, the operator splitting method with a staggered time mesh was utilized to balance the computational cost and accuracy. Finally, VERA Problem 6 with power and boron perturbation and the NEACRP transient benchmark were simulated for analysis. The numerical results show that the MFNK method can outperform Picard iteration in terms of both efficiency and robustness for a wide range of problems. Furthermore, the reasonable agreement between the simulation results and the reference results for the NEACRP transient benchmark verifies the capability of predicting the behavior of the nuclear reactor.
Coupling calculationHigh-fidelity neutronicsThermal-hydraulicsMatrix-free Newton/Krylov methodTransient simulation
R.R. Yang, Y. Yuan, C. Hao et al., keff uncertainty quantification and analysis due to nuclear data during the full lifetime burnup calculation for a small-sized prismatic high temperature gas-cooled reactor. Nucl. Sci. Tech. 32(11), 127 (2021). doi: 10.1007/s41365-021-00969-whttp://doi.org/10.1007/s41365-021-00969-w
J.A. Turner, K. Clarno, M. Sieger et al., The Virtual Environment for Reactor Applications (VERA): Design and architecture. J. Comput. Phys. 326, 544-568 (2016). doi: 10.1016/j.jcp.2016.09.003http://doi.org/10.1016/j.jcp.2016.09.003
D. She, J. Guo, Z.H. Liu et al., PANGU code for pebble-bed HTGR reactor physics and fuel cycle simulations. Ann. Nucl. Energy 126, 48-58 (2019). doi: 10.1016/j.anucene.2018.11.005http://doi.org/10.1016/j.anucene.2018.11.005
D. She, B. Xia, J. Guo et al., Prediction calculations for the first criticality of the HTR-PM using the PANGU code. Nucl. Sci. Tech. 32, 90 (2021). doi: 10.1007/s41365-021-00936-5http://doi.org/10.1007/s41365-021-00936-5
F. Gou, Y. Liu, F.B. Chen et al., Thermal behavior of the HTR-10 under combined PLOFC and ATWS condition initiated by unscrammed control rod withdrawal. Nucl. Sci. Tech. 29, 123 (2018). doi: 10.1007/s41365-018-0472-3http://doi.org/10.1007/s41365-018-0472-3
B. Deng, Y. Cui, J.G. Chen et al., Core and blanket thermal-hydraulic analysis of a molten salt fast reactor based on coupling of OpenMC and OpenFOAM. Nucl. Sci. Tech. 31, 85 (2020). doi: 10.1007/s41365-020-00803-9http://doi.org/10.1007/s41365-020-00803-9
R. Vadi, K. Sepanloo, An improved semi-implicit direct kinetics method for transient analysis of nuclear reactors. Nucl. Sci. Tech. 30(11), 162 (2019). doi: 10.1007/s41365-019-0690-3http://doi.org/10.1007/s41365-019-0690-3
Q. Shen, S. Choi, B. Kochunas, A robust, relaxation-free multiphysics iteration scheme for CMFD-accelerated neutron transport k-eigenvalue calculations-II: Numerical results. Nucl. Sci. Eng. 195(11), 1202-1235 (2021). doi: 10.1080/00295639.2021.1906586http://doi.org/10.1080/00295639.2021.1906586
A. Facchini, J. Lee, H.G. Joo, Investigation of Anderson acceleration in neutronics-thermal hydraulics coupled direct whole core calculation. Ann. Nucl. Energy 153, 108042 (2021). doi: 10.1016/j.anucene.2020.108042http://doi.org/10.1016/j.anucene.2020.108042
A. Hajizadeh, H. Kazeminejad, S. Talebi, High-order fully implicit SIMPLE-based model for fully implicit simulation of upward two-phase flow. Nucl. Sci. Tech. 29(8), 114 (2018). doi: 10.1007/s41365-018-0456-3http://doi.org/10.1007/s41365-018-0456-3
Y. Xu, A matrix free Newton/Krylov method for coupling complex multi-physics subsystems. Dissertation, Purdue University, 2004.
O. Zerkak, T. Kozlowski, I. Gajev, Review of multi-physics temporal coupling methods for analysis of nuclear reactors. Ann. Nucl. Energy 84, 225-233 (2015). doi: 10.1016/j.anucene.2015.01.019http://doi.org/10.1016/j.anucene.2015.01.019
C. Hao, L.X. Liu, L. Kang et al., An efficient hybrid multi-level CMFD in space and energy for accelerating the high-fidelity neutron transport calculation. Ann. Nucl. Energy 161, 108446 (2021). doi: 10.1016/j.anucene.2021.108446http://doi.org/10.1016/j.anucene.2021.108446
C. Hao, Y. Xu, T.J. Downar, Multi-level coarse mesh finite difference acceleration with local two-node nodal expansion method. Ann. Nucl. Energy 116, 105-113 (2018). doi: 10.1016/j.anucene.2018.02.002http://doi.org/10.1016/j.anucene.2018.02.002
L. Kang, C. Hao, Q. Zhao et al., Two-level time-dependent GET based CMFD acceleration for 3D whole core transient transport simulation using 2D/1D method. Ann. Nucl. Energy 142, 107405 (2020). doi: 10.1016/j.anucene.2020.107405http://doi.org/10.1016/j.anucene.2020.107405
L.X. Liu, C. Hao, Y. Xu, Equivalent low-order angular flux nonlinear finite difference equation of MOC transport calculation. Nucl. Sci. Tech. 31, 125 (2020). doi: 10.1007/s41365-020-00834-2http://doi.org/10.1007/s41365-020-00834-2
A.T. Godfrey, VERA core physics benchmark progression problem specifications, CASL-U-2012-0131-004. Consortium for Advanced Simulation of Light Water Reactors (2014).
H. Finnemann, NEACRP 3-D LWR core transient benchmark final specifications, NEACRP-L-335. OECD Nuclear Energy Agency (1991).
L. Kang, C. Hao, Q. Zhao et al., The advanced multilevel predictor-corrector quasi-static method for pin-resolved neutron kinetics simulation. Front. Energy Res. 9, 747148 (2021). doi: 10.3389/fenrg.2021.747148http://doi.org/10.3389/fenrg.2021.747148
C. Hao, L. Kang, Y. Xu et al., 3D whole-core neutron transport simulation using 2D/1D method via multi-level generalized equivalence theory based CMFD acceleration. Ann. Nucl. Energy 122, 79-90 (2018). doi: 10.1016/j.anucene.2018.08.014http://doi.org/10.1016/j.anucene.2018.08.014
Q. Shen, Robust and efficient methods in transient whole-core. Dissertation, University of Michigan, 2021.
D.A. Knoll, D.E. Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357-397 (2004). doi: 10.1016/j.jcp.2003.08.010http://doi.org/10.1016/j.jcp.2003.08.010
H. Finnemann, H. Bauer, A. Galati et al., Results of LWR core transient benchmark, NEA/NSC/DOC (93)25. OECD Nuclear Energy Agency (1993).
A2: central rod ejection at HFP. https://engineering.purdue.edu/PARCS/Code/TestSuite/CalculationMode/StandAloneMode/NEACRPPWRhttps://engineering.purdue.edu/PARCS/Code/TestSuite/CalculationMode/StandAloneMode/NEACRPPWR
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution