1.Key Lab of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2.Nuclear and New Energy Institute, Tsinghua University, Beijing 100084, China
3.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
4.Key Laboratory of Beam Technology, Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
5.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
6.Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo 113-8656, Japan
Sha-Sha Lv lvss@bnu.edu.cn
De-Sheng Ai ai_desh@tsinghua.edu.cn
Zheng-Cao Li zcli@tsinghua.edu.cn
Scan for full text
Zi-Qin Shen, Jie Gao, Sha-Sha Lv, et al. OKMC simulation of vacancy-enhanced Cu solute segregation affected by temperature/irradiation in the Fe-Cu system. [J]. Nuclear Science and Techniques 33(11):149(2022)
Zi-Qin Shen, Jie Gao, Sha-Sha Lv, et al. OKMC simulation of vacancy-enhanced Cu solute segregation affected by temperature/irradiation in the Fe-Cu system. [J]. Nuclear Science and Techniques 33(11):149(2022) DOI: 10.1007/s41365-022-01122-x.
The effects of annealing and irradiation on the evolution of Cu clusters in α-Fe are investigated using object kinetic Monte Carlo simulations. In our model, vacancies act as carriers for chemical species via thermally activated diffusion jumps, thus playing an important role in solute diffusion. At the end of the Cu cluster evolution, the simulations of the average radius and number density of the clusters are consistent with the experimental data, which indicates that the proposed simulation model is applicable and effective. For the simulation of the annealing process, it is found that the evolution of the cluster size roughly follows the 1/2 time power law with the increase in radius during the growth phase and the 1/3 time power law during the coarsening phase. In addition, the main difference between neutron and ion irradiation is the growth and evolution process of the copper-vacancy clusters. The aggregation of vacancy clusters under ion irradiation suppresses the migration and coarsening of the clusters, which ultimately leads to a smaller average radius of the copper clusters. Our proposed simulation model can supplement experimental analyses and provide a detailed evolution mechanism of vacancy-enhanced precipitation, thereby providing a foundation for other elemental precipitation research.
Object kinetic Monte CarloIrradiation effectSolute segregationReactor pressure vessel
R.E. Smallman, K.H. Westmacott, Structure of quenched and irradiated metals. J. Appl. Phys. 30(5), 603-616 (1959). doi: 10.1063/1.1735203http://doi.org/10.1063/1.1735203
P.D. Styman, J.M. Hyde, K. Wilford et al., Characterisation of interfacial segregation to Cu-enriched precipitates in two thermally aged reactor pressure vessel steel welds. Ultramicroscopy 159, 292-298 (2015). doi: 10.1016/j.ultramic.2015.05.013http://doi.org/10.1016/j.ultramic.2015.05.013
T. Onitsuka, M. Takenaka, E. Kuramoto et al., Deformation-enhanced Cu precipitation in Fe-Cu alloy studied by positron annihilation spectroscopy. Phys. Rev. B 65(1), 012204 (2001). doi: 10.1103/physrevb.65.012204http://doi.org/10.1103/physrevb.65.012204
S. Jin, X. Cao, G. Cheng et al., Thermally promoted evolution of open-volume defects and Cu precipitates in the deformed FeCu alloys. J. Nucl. Mater. 2018, 501, 293-301 (2018). doi: 10.1016/j.jnucmat.2018.01.061http://doi.org/10.1016/j.jnucmat.2018.01.061
S. Jin, P. Zhang, E. Lu, L. Guo et al., Correlation between Cu precipitates and irradiation defects in Fe–Cu model alloys investigated by positron annihilation spectroscopy. Acta Mater. 103, 658-64 (2016). doi: 10.1016/j.actamat.2015.10.051http://doi.org/10.1016/j.actamat.2015.10.051
V. Slugeň, A. Kryukov, Microstructural study of WWER reactor pressure vessel steels. Nucl. Eng. Des. 263, 308-312 (2013). doi: 10.1016/j.nucengdes.2013.06.013http://doi.org/10.1016/j.nucengdes.2013.06.013
T. Muroga, N. Sekimura, New insights into the temperature effects on neutron irradiation of structural materials1. Fusion Eng. Des. 41(1-4), 39-46 (1998). doi: 10.1016/s0920-3796(97)00141-5http://doi.org/10.1016/s0920-3796(97)00141-5
X. Wang, J.L. Li, Z. Wu et al., CMGC - A CAD to Monte Carlo Geometry Conversion Code. Nucl. Sci. Tech. 31(8), 82 (2020). doi: 10.1007/s41365-020-00793-8http://doi.org/10.1007/s41365-020-00793-8
T.Y. Huang, Z.G. Li, K. Wang et al., Hybrid windowed networks for on-the-fly Doppler broadening in RMC code. Nucl. Sci. Tech. 32(6), 62 (2021). doi: 10.1007/s41365-021-00901-2http://doi.org/10.1007/s41365-021-00901-2
Z.G. Li, K. Wang, Y.C. Guo et al., Forced propagation method for Monte Carlo fission source convergence acceleration in the RMC. Nucl. Sci. Tech. 32(3), 27 (2021). doi: 10.1007/s41365-021-00868-0http://doi.org/10.1007/s41365-021-00868-0
C. S. Becquart, C. Domain. Malerba Introducing chemistry in atomistic kinetic Monte Carlo simulations of Fe alloys under irradiation. Phys. Status Solidi B 247(1), 9–22 (2010). doi: 10.1002/pssb.200945251http://doi.org/10.1002/pssb.200945251
F. Soisson, C.C. Fu, Cu-precipitation kinetics in Fe from atomistic simulations: Vacancy-trapping effects and Cu-cluster mobility. Phys. Rev. B 76, 214102 (2007). doi: 10.1103/physrevb.76.214102http://doi.org/10.1103/physrevb.76.214102
N. Castin, M. I. Pascuet, L. Malerba, Modeling the first stages of Cu precipitation in α-Fe using a hybrid atomistic kinetic Monte Carlo approach. J. Chem. Phys. 135, 064502 (2011). doi: 10.1063/1.3622045http://doi.org/10.1063/1.3622045
I. Martin-Bragado, A. Rivera, G. Valles et al., MMonCa: An Object Kinetic Monte Carlo simulator for damage irradiation evolution and defect diffusion. Comput. Phys. Comm. 184(12), 2703-2710 (2013). doi: 10.1016/j.cpc.2013.07.011http://doi.org/10.1016/j.cpc.2013.07.011
P. J. Othen, M. L. Jenkins & G. D. W. Smith, High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe. Phil. Mag. A 70(1), 1-24 (1994). doi: 10.1080/01418619408242533http://doi.org/10.1080/01418619408242533
W.M. Young & E.W. Elcock, Monte Carlo studies of vacancy migration in binary ordered alloys: I. Proc. Phys. Soc. 89(3), 735-746 (1966). doi: 10.1088/0370-1328/89/3/329http://doi.org/10.1088/0370-1328/89/3/329
A. Kristen, Fichthorn and W. H. Weinberg. Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys. 95, 1090 (1991). doi: 10.1063/1.461138http://doi.org/10.1063/1.461138
M.I. Pascuet, N. Castin, C.S. Becquart et al., Stability and mobility of Cu–vacancy clusters in Fe–Cu alloys: A computational study based on the use of artificial neural networks for energy barrier calculations. J. Nucl. Mater. 412(1), 106–115(2011). doi: 10.1016/j.jnucmat.2011.02.038http://doi.org/10.1016/j.jnucmat.2011.02.038
A.T. Al-Motasem, M. Posselt, F. Bergner, Nanoclusters in bcc-Fe containing vacancies, copper and nickel: Structure and energetics. J. Nucl. Mater. 418(1-3), 215–222(2011). doi: 10.1016/j.jnucmat.2011.07.002http://doi.org/10.1016/j.jnucmat.2011.07.002
S. Pizzini, K. J. Roberts, W. J. Phythian et al., A fluorescence EXAFS study of the structure of copper-rich precipitates in Fe–Cu and Fe–Cu–Ni alloys. Phil. Mag. Lett. 61(4), 223-229 (1990). doi: 10.1080/09500839008202362http://doi.org/10.1080/09500839008202362
J. J. Blackstock & G. J. Ackland, Phase transitions of copper precipitates in Fe–Cu alloys. Phil. Mag. A 81(9), 2127-2148 (2001). doi: 10.1080/01418610108217139http://doi.org/10.1080/01418610108217139
C.S. Becquart, C. Domain, Ab initio contribution to the study of complexes formed during dilute FeCu alloys radiation. Nucl. Instr. and Meth. B 202, 44-50 (2003). doi: 10.1016/s0168-583x(02)01828-1http://doi.org/10.1016/s0168-583x(02)01828-1
C.C. Fu, J. Torre, F Willaime, et al., Multiscale modelling of defect kinetics in irradiated iron. Nature Mater. 4, 68-74(2005). doi: 10.1038/nmat1286http://doi.org/10.1038/nmat1286
L. Malerba, M.C. Marinica, N. Anento et al., Comparison of empirical interatomic potentials for iron applied to radiation damage studies. J. Nucl. Mater. 406(1), 19-38(2010). doi: 10.1016/j.jnucmat.2010.05.017http://doi.org/10.1016/j.jnucmat.2010.05.017
M. I. Mendelev, S. Han, D. J. Srolovitz, Development of new interatomic potentials appropriate for crystalline and liquid iron. Phil. Mag. Vol. 83(35), 3977–3994 (2003). doi: 10.1080/14786430310001613264http://doi.org/10.1080/14786430310001613264
M.I. Pascuet, N. Castin, C.S. Becquart et al., Stability and mobility of Cu-vacancy clusters in Fe-Cu alloys: A computational study based on the use of artificial neural networks for energy barrier calculations. J. Nucl. Mater. 42(1), 106-115(2011). doi: 10.1016/j.jnucmat.2011.02.038http://doi.org/10.1016/j.jnucmat.2011.02.038
F.A. Nichols, Kinetics of diffusional motion of pores in solids: A review. J. Nucl. Mater. 30(1-2), 143-165(1969). doi: 10.1016/0022-3115(69)90176-7http://doi.org/10.1016/0022-3115(69)90176-7
C. Domain, C.S. Becquart, L. Malerba, Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J. Nucl. Mater. 335(1), 121-145(2004).doi: 10.1016/j.jnucmat.2004.07.037http://doi.org/10.1016/j.jnucmat.2004.07.037
V. Jansson, L. Malerba, Simulation of the nanostructure evolution under irradiation in Fe–C alloys. J. Nucl. Mater. 443(1-3), 274–285(2013). doi: 10.1016/j.jnucmat.2013.07.046http://doi.org/10.1016/j.jnucmat.2013.07.046
A.V. Barashev, S.I. Golubov, H. Trinkaus, Reaction kinetics of glissile interstitial clusters in a crystal containing voids and dislocations. Phil. Mag. A 81(10), 2515-2532(2001). doi: 10.1080/01418610108217161http://doi.org/10.1080/01418610108217161
B.D. Wirth, G.R. Odette, D. Maroudas et al., Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron. J. Nucl. Mater. 276(1-3), 33-40(2000). doi: 10.1016/s0022-3115(99)00166-xhttp://doi.org/10.1016/s0022-3115(99)00166-x
N. Castin, G. Bonny, A. Bakaev et al., Object kinetic Monte Carlo model for neutron and ion irradiation in tungsten: Impact of transmutation and carbon impurities. J. Nucl. Mater. 500, 15-25(2018). doi: 10.1016/j.jnucmat.2017.12.014http://doi.org/10.1016/j.jnucmat.2017.12.014
L. Chen, K. Nishida, Kenta Murakami et al., Effects of solute elements on microstructural evolution in Fe-based alloys during neutron irradiation following thermal ageing. J Nucl. Mater. 498, 259-268(2018). doi: 10.1016/j.jnucmat.2017.10.026http://doi.org/10.1016/j.jnucmat.2017.10.026
E. Vincent, C. S. Becquart, C. Pareige et al., Precipitation of the FeCu system: a critical review of atomic kinetic Monte Carlo simulations. J. Nucl. Mater. 373(1-3), 387-401 (2008). doi: 10.1016/j.jnucmat.2007.06.016http://doi.org/10.1016/j.jnucmat.2007.06.016
Y. L. Bouar, F. Soisson, Kinetic pathways from embedded-atom-method potentials: Influence of the activation barriers. Phys. Rev. B 65(9), 094103(2002). doi: 10.1103/physrevb.65.094103http://doi.org/10.1103/physrevb.65.094103
I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids 19(1–2), 35-50 (1961). doi: 10.1016/0022-3697(61)90054-3http://doi.org/10.1016/0022-3697(61)90054-3
L. Liu, K. Nishida, K. Dohi et al., Effects of solute elements on hardening and microstructural evolution in neutron-irradiated and thermally-aged reactor pressure vessel model alloys. J. Nucl. Sci. Tech. 53(10): 1546-53(2016). doi: 10.1080/00223131.2015.1136902http://doi.org/10.1080/00223131.2015.1136902
S. Shu, N. Almirall, P.B. Wells et al., Precipitation in Fe-Cu and Fe-Cu-Mn model alloys under irradiation: Dose rate effects. Acta Mater. 157, 72-82(2018). doi: 10.1016/j.actamat.2018.07.017http://doi.org/10.1016/j.actamat.2018.07.017
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution