1.Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
2.Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
3.China Institute of Atomic Energy, Beijing 102413, China
4.Shanghai Institute of Space Power-Sources, Shanghai 200245, China
lixin_0128@sina.com (X. Li)
sanhs@xmu.edu.cn (H. S. San)
Scan for full text
Zan Ding, Tong-Xin Jiang, Ren-Rong Zheng, et al. Quantitative modeling, optimization, and verification of 63Ni-powered betavoltaic cells based on three-dimensional ZnO nanorod arrays. [J]. Nuclear Science and Techniques 33(11):144(2022)
Zan Ding, Tong-Xin Jiang, Ren-Rong Zheng, et al. Quantitative modeling, optimization, and verification of 63Ni-powered betavoltaic cells based on three-dimensional ZnO nanorod arrays. [J]. Nuclear Science and Techniques 33(11):144(2022) DOI: 10.1007/s41365-022-01127-6.
Betavoltaic cells (BCs) are promising self-generating power cells with long life and high power density. However, the low energy conversion efficiency (,ECE,) has limitations in practical engineering applications. Wide-bandgap semiconductors (WBGSs) with three-dimensional (3-D) nanostructures are ideal candidates for increasing the ,ECE, of BCs. This paper proposes hydrothermally-grown ZnO nanorod arrays (ZNRAs) for ,63,Ni-powered BCs. A quantitative model was established for simulation using the parameter values of the dark characteristics, which were obtained from the experimental measurements for a simulated BC based on a Ni-incorporated ZNRAs structure. Monte Carlo (MC) modeling and simulation were conducted to obtain the values of the ,β, energy deposited in ZNRAs with different nanorod spacings and heights. Through the simulation and optimization of the 3-D ZNRAs and 2-D ZnO bulk structures, the performance of the ,63,Ni-powered BCs based on both structures was evaluated using a quantitative model. The BCs based on the 3-D ZNRAs structure and 2-D ZnO bulk structure achieved a maximum ,ECE, of 10.1% and 4.69%, respectively, which indicates the significant superiority of 3-D nanostructured WBGSs in terms of increasing the ,ECE, of BCs.
Betavoltaic cellsMonte Carlo simulationZnO nanorod arraysQuantitative modelPerformance evaluation.
L.C. Olsen, P. Cabauy, B.J Elkind, Betavoltaic power sources. Phys. Today. 65, 35-38 (2012). doi: 10.1063/PT.3.1820http://doi.org/10.1063/PT.3.1820
L.C. Olsen, Betavoltaic energy conversion. Energy Conver. 13, 117-124 (1973). doi: 10.1016/0013-7480(73)90010-7http://doi.org/10.1016/0013-7480(73)90010-7
C.L. Weaver, R.J. Schott, M A Prelas et al., Radiation resistant PIDECα cell using photon intermediate direct energy conversion and a 210 Po source. Appl. Radiat. Isotopes. 132, 110-115 (2018). doi: 10.1016/j.apradiso.2017.11.026http://doi.org/10.1016/j.apradiso.2017.11.026
M.G. Spencer, T. Alam, High power direct energy conversion by nuclear batteries. Appl. Radiat. Isotopes. 6, 031305 (2019). doi: 10.1063/1.5123163http://doi.org/10.1063/1.5123163
C.J. Eiting, V. Krishnamoorthy, S. Rodgers et al., Demonstration of a radiation resistant, high efficiency SiC betavoltaic. Appl. Phys. Lett. 88, 1-38 (2006). doi: 10.1063/1.2172411http://doi.org/10.1063/1.2172411
D.Y. Qiao, X.J. Chen, Y. Ren et al., A Micro Nuclear Battery Based on SiC Schottky Barrier Diode. J. Microelectromech. S. 20, 685-690 (2011). doi: 10.1109/JMEMS.2011.2127448http://doi.org/10.1109/JMEMS.2011.2127448
A.A. Svintsov, A.A Krasnov, M.A Polikarpov et al., Betavoltaic battery performance: Comparison of modeling and experiment. Appl. Radiat. Isotopes. 137, 184-189 (2018). doi: 10.1016/j.apradiso.2018.04.010http://doi.org/10.1016/j.apradiso.2018.04.010
C. Munson, Q. Gaimard, K. Merghem et al., Modeling, Design, Fabrication and Experimentation of a GaN-based, 63Ni Betavoltaic Battery. J. Phys. D: Appl. Phys. 51, 035101 (2017). doi: 10.1088/1361-6463/aa9e41http://doi.org/10.1088/1361-6463/aa9e41
S. Butera, M.D.C Whitaker, A.B Krysa et al., Investigation of a temperature tolerant InGaP (GaInP) converter layer for a 63Ni betavoltaic cell. J. Phys. D: Appl. Phys. 50, 345101 (2017). doi: 10.1088/1361-6463/aa7bc5http://doi.org/10.1088/1361-6463/aa7bc5
J. Dixon, A. Rajan, S. Bohlemann et al., Evaluation of a silicon 90Sr betavoltaic power source. Sci. Rep. 6, 38182 (2016). doi: 10.1038/srep38182http://doi.org/10.1038/srep38182
W. Sun, N.P. Kherani, K.D. Hirschman et al., A three-dimensional porous silicon p-n diode for betavoltaics and photovoltaics. Adv. Mater. 17, 1230-1233 (2005). doi: 10.1002/adma.200401723http://doi.org/10.1002/adma.200401723
J.W. Murphy, L.F. Voss, C.D. Frye et al., Design considerations for three-dimensional betavoltaics. Aip. Adv. 9, 065208 (2019). doi: 10.1063/1.5097775http://doi.org/10.1063/1.5097775
Y. Ma, N. Wang, J. Chen et al., Betavoltaic enhancement using defect-engineered TiO2 nanotube arrays through electrochemical reduction in organic electrolytes. Acs Appl. Mater. Inter. 10, 22174-22181 (2018). doi: 10.1021/acsami.8b05151http://doi.org/10.1021/acsami.8b05151
C.S. Chen, N. Wang, P. Zhou et al., Electrochemically reduced graphene oxide on well-aligned titanium dioxide nanotube arrays for betavoltaic enhancement. Acs Appl. Mater. Inter. 8, 24638-24644 (2016). doi: 10.1021/acsami.6b08112http://doi.org/10.1021/acsami.6b08112
Q. Zhang, R.B. Chen, H.S. San et al., Betavoltaic effect in titanium dioxide nanotube arrays under build-in potential difference. J. Power Sources. 282, 529-533 (2015) doi: 10.1016/j.jpowsour.2015.02.094http://doi.org/10.1016/j.jpowsour.2015.02.094
C.S. Chen, J. Chen, Z. Wang et al., Free-standing ZnO nanorod arrays modified with single-walled carbon nanotubes for betavoltaics and photovoltaics. J. Mater. Sci. Technol. 19, 48-57 (2020). doi: 10.1016/j.jmst.2020.03.040http://doi.org/10.1016/j.jmst.2020.03.040
N. Wang, Y. Ma, J. Chen, C.S. Chen et al., Defect-induced betavoltaic enhancement in black titania nanotube arrays. Nanoscale. 10, 13028-13036 (2018). doi: 10.1039/c8nr02824ahttp://doi.org/10.1039/c8nr02824a
N. Wang, R.R. Zheng, T.X. Chi et al., Betavoltaic-powered electrochemical cells using TiO2 nanotube arrays incorporated with carbon nanotubes. Compos Part B-Eng. 239, 109952 (2022). doi: 10.1016/j.compositesb.2022.109952http://doi.org/10.1016/j.compositesb.2022.109952
R.R. Zheng, Z. Wang, C.Q. Zhang et al., Photocatalytic enhancement using defect-engineered black mesoporous TiO2/CeO2 nanocomposite aerogel. Compos. Part B-Eng. 222, 109037 (2021). doi: 10.1016/j.compositesb.2021.109037http://doi.org/10.1016/j.compositesb.2021.109037
M. Quintana, Maria Edvinsson,, et al. Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime. J. Phys. Chem. C 111, 1035-1041 (2007). doi: 10.1021/jp065948fhttp://doi.org/10.1021/jp065948f
M. Wang, J. Bai, FL. Formal et al., Solid-State Dye-Sensitized Solar Cells using Ordered TiO2 Nanorods on Transparent Conductive Oxide as Photoanodes. J. Phys. Chem. C 116, 3266-3273 (2012). doi: 10.1021/jp209130xhttp://doi.org/10.1021/jp209130x
H. Zhang, AV. Babichev, G. Jacopin et al., Characterization and modeling of a ZnO nanowire ultraviolet photodetector with graphene transparent contact. J. Appl. Phys. 114, 7433-7473 (2013). doi: 10.1063/1.4854455http://doi.org/10.1063/1.4854455
X. Wang, Y. Han, J. Zhang et al., The design of a direct charge nuclear battery with high energy conversion efficiency. Appl. Radiat. Isotopes. 148, 147-151 (2019). doi: 10.1016/j.apradiso.2019.03.040http://doi.org/10.1016/j.apradiso.2019.03.040
M. Wu, J. Zhang, Design and simulation of high conversion efficiency betavoltaic battery based on a stacked multilayer structure. AIP Adv. 9, 075124 (2019). doi: 10.1063/1.5094826http://doi.org/10.1063/1.5094826
X.Y. Li, J.B. Lu, Y.M. Liu et al., Exploratory study of betavoltaic battery using ZnO as the energy converting material. Nucl. Sci. Tech. 30, 4 (2019). doi: 10.1007/s41365-019-0577-3http://doi.org/10.1007/s41365-019-0577-3
Y.J. Yoon, J.S. Lee, I.M Kang et al., Design and optimization of GaN-based betavoltaic cell for enhanced output power density. Int. J. Energ. Res. 45, 799-806 (2021). doi: 10.1002/er.5909http://doi.org/10.1002/er.5909
Z. Song, C. Zhao, F. Liao et al., Perovskite-Betavoltaic Cells, A Novel Application of Organic-Inorganic Hybrid Halide Perovskites. Acs. Appl. Mater. Inter. 11, 32969-32977 (2019). doi: 10.1021/acsami.9b09952http://doi.org/10.1021/acsami.9b09952
Y.P. Liu, X.B. Tang, Z.H. Xu et al., Influences of planar source thickness on betavoltaics with different semiconductors. J. Radioanal Nucl. Ch. 304, 517-525 (2015). doi: 10.1007/s10967-014-3879-2http://doi.org/10.1007/s10967-014-3879-2
X.Y. Li, J.B. Lu, R.Z. Zheng et al., Comparison of time-related electrical properties of PN junctions and Schottky diodes for ZnO-based betavoltaic batteries. Nucl. Sci. Tech. 31, 18 (2020). doi: 10.1007/s41365-020-0723-yhttp://doi.org/10.1007/s41365-020-0723-y
H. Demers, N.P. Demers, A.R. Couture et al., Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning. 33, 135-146 (2011). doi: 10.1002/sca.20262http://doi.org/10.1002/sca.20262
M. Chen, L.F. Hu, J.X. Xu et al., ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector. Small. 7, 2449-2453 (2011). doi: 10.1002/smll.201100694http://doi.org/10.1002/smll.201100694
X.B. Tang, Y.P. Liu, D. Ding et al., Optimization design of GaN betavoltaic microbattery. Sci. China Tech. Sci. 55, 659–664 (2012). doi: 10.1007/s11431-011-4739-8http://doi.org/10.1007/s11431-011-4739-8.
X.B. Tang, D. Ding, Y.P. Liu et al., Optimization design and analysis of Si-63Ni betavoltaic battery. Sci. China Technol. Sc. 55, 990-996 (2012). doi: 10.1007/s11431-012-4752-6http://doi.org/10.1007/s11431-012-4752-6
H. Gao, S.Z. Luo, H.M. Zhang et al., Demonstration, radiation tolerance and design on a betavoltaic micropower. Energy. 51, 116-122 (2013). doi: 10.1016/j.energy.2012.12.042http://doi.org/10.1016/j.energy.2012.12.042
C. Zhao, L. Lei, F. Liao et al., Efficiency prediction of planar betavoltaic batteries basing on precise modeling of semiconductor units. Appl. Phys. Lett. 117, 263901 (2020). doi: 10.1063/5.0033052http://doi.org/10.1063/5.0033052
S.H. Yang, Y.J. Lin, H.C. Chang et al., Effects of H2O2 treatment on the optical and structural properties of ZnO nanorods and the electrical properties of conductive polymer/ZnO-nanorod array diodes. Thin Solid Films. 545, 476-479 (2013). doi: 10.1016/j.tsf.2013.08.063http://doi.org/10.1016/j.tsf.2013.08.063
S.K. Cheung, N.W. Cheung, Extraction of schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85-87 (1986). doi: 10.1063/1.97359http://doi.org/10.1063/1.97359
S. Mridha, D. Basak, ZnO/polyaniline based inorganic/organic hybrid structure: Electrical and photoconductivity properties. Appl. Phys. Lett. 92, 42 (2008). doi: 10.1063/1.2898399http://doi.org/10.1063/1.2898399
Z. Yuan, Low-temperature growth of well-aligned ZnO nanorod arrays by chemical bath deposition for schottky diode application. J. Electron. Mater. 44, 1187-1191 (2015). doi: 10.1007/s11664-015-3661-4http://doi.org/10.1007/s11664-015-3661-4
Y.L. Tao, M. Fu, A.L. Zhao et al., The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method. J. Alloy Compd. 489, 99-102 (2010). doi: 10.1016/j.jallcom.2009.09.020http://doi.org/10.1016/j.jallcom.2009.09.020
S.V. Kurudirek, K.C. Pradel, C.J. Summers, Low-temperature hydrothermally grown 100 μm vertically well-aligned ultralong and ultradense ZnO nanorod arrays with improved PL property. J. Alloy Compd. 702, 700-709 (2017). doi: 10.1016/j.jallcom.2017.01.273http://doi.org/10.1016/j.jallcom.2017.01.273
M. Fang, Z.W. Liu, Controllable size and photoluminescence of ZnO nanorod arrays on Si substrate prepared by microwave-assisted hydrothermal method. Ceram. Int. 43, 6955-6962 (2017). doi: 10.1016/j.ceramint.2017.02.119http://doi.org/10.1016/j.ceramint.2017.02.119
W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510-519 (1961). doi: 10.1063/1.1736034http://doi.org/10.1063/1.1736034
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution