1.Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
2.Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China.
† zhanghexia@mails.ccnu.edu.cn
‡ bwzhang@mail.ccnu.edu.cn
Scan for full text
He-Xia Zhang, Yu-Xin Xiao, Jin-Wen Kang, et al. Phenomenological study of the anisotropic quark matter in the 2-flavor Nambu–Jona–Lasinio model. [J]. Nuclear Science and Techniques 33(11):150(2022)
He-Xia Zhang, Yu-Xin Xiao, Jin-Wen Kang, et al. Phenomenological study of the anisotropic quark matter in the 2-flavor Nambu–Jona–Lasinio model. [J]. Nuclear Science and Techniques 33(11):150(2022) DOI: 10.1007/s41365-022-01129-4.
With the two flavor Nambu–Jona–Lasinio (NJL) model, we carried out a phenomenological study on the chiral phase structure, mesonic properties, and transport properties of momentum-space anisotropic quark matter. To calculate the transport coefficients we utilized the kinetic theory in the relaxation time approximation, where the momentum anisotropy is embedded in the estimation of both the distribution function and relaxation time. It was shown that an increase in the anisotropy parameter ,ξ, may result in a catalysis of chiral symmetry breaking. The critical endpoint (CEP) is shifted to lower temperatures and larger quark chemical potentials as ,ξ, increases, and the impact of momentum anisotropy on the CEP temperature is almost the same as that on the quark chemical potential of the CEP. The meson masses and the associated decay widths also exhibit a significant ,ξ, dependence. It was observed that the temperature behavior of the scaled shear viscosity ,η/T,3, and scaled electrical conductivity ,σ,el,/,T, exhibited a similar dip structure, with the minima of both ,η/T,3, and ,σ,el,/,T, shifting toward higher temperatures with increasing ,ξ,. Furthermore, we demonstrated that the Seebeck coefficient ,S, decreases when the temperature rises and its sign is positive, indicating that the dominant carriers for converting the temperature gradient to the electric field are up-quarks. The Seebeck coefficient ,S, is significantly enhanced with a large ,ξ, for a temperature below the critical temperature.
Heavy-ion collisionMomentum anisotropyNJL modelChiral phase transitonTransport coefficientQuark matter
Z. B. Tang, W. M. Zha, Y. F. Zhang, An experimental review of open heavy flavor and quarkonium production at RHIC. Nucl. Sci. Tech. 31, 81 (2020). doi: 10.1007/s41365-020-00785-8http://doi.org/10.1007/s41365-020-00785-8
L. L. Zhu, B. Wang, M. Wang et al., Energy and centrality dependence of light nuclei production in relativistic heavy-ion collisions. Nucl. Sci. Tech. 33, 45 (2022). doi: 10.1007/s41365-022-01028-8http://doi.org/10.1007/s41365-022-01028-8
J. H. Gao, G. L. Ma, S. Pu et al., Recent developments in chiral and spin polarization effects in heavy-ion collisions. Nucl. Sci. Tech. 31, 90 (2020). doi: 10.1007/s41365-020-00801-xhttp://doi.org/10.1007/s41365-020-00801-x
Y. C. Liu, X. G. Huang, Anomalous chiral transports and spin polarization in heavy-ion collisions. Nucl. Sci. Tech. 31, 56 (2020). doi: 10.1007/s41365-020-00764-zhttp://doi.org/10.1007/s41365-020-00764-z
Y. C. Liu, X. G. Huang, Spin polarization formula for Dirac fermions at local equilibrium. Sci. China Phys. Mech. Astron. 65, 272011 (2022). doi: 10.1007/s11433-022-1903-8http://doi.org/10.1007/s11433-022-1903-8
Y. Aoki, G. Endrodi, Z. Fodor et al., The Order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675 (2006). doi: 10.1038/nature05120http://doi.org/10.1038/nature05120
A. Bazavov et al., Equation of state in (2+1)-flavor QCD. Phys. Rev. D 90, 094503 (2014). doi: 10.1103/PhysRevD.90.094503http://doi.org/10.1103/PhysRevD.90.094503
K. Splittorff, J. J. M. Verbaarschot, The QCD Sign Problem for Small Chemical Potential. Phys. Rev. D 75, 116003 (2007). doi: 10.1103/PhysRevD.75.116003http://doi.org/10.1103/PhysRevD.75.116003
A. Barducci, R. Casalbuoni, S. De Curtis et al., Chiral Symmetry Breaking in QCD at Finite Temperature and Density. Phys. Lett. B 231, 463 (1989). doi: 10.1016/0370-2693(89)90695-3http://doi.org/10.1016/0370-2693(89)90695-3
M. Asakawa, K. Yazaki, Chiral Restoration at Finite Density and Temperature. Nucl. Phys. A 504, 668 (1989). doi: 10.1016/0375-9474(89)90002-Xhttp://doi.org/10.1016/0375-9474(89)90002-X
R. V. Gavai, S. Gupta, Pressure and nonlinear susceptibilities in QCD at finite chemical potentials. Phys. Rev. D 68, 034506 (2003). doi: 10.1103/PhysRevD.68.034506http://doi.org/10.1103/PhysRevD.68.034506
C. R. Allton, S. Ejiri, S. J. Hands et al., The Equation of state for two flavor QCD at nonzero chemical potential. Phys. Rev. D 68, 014507 (2003). doi: 10.1103/PhysRevD.68.014507http://doi.org/10.1103/PhysRevD.68.014507
E. Laermann, F. Meyer, M. P. Lombardo, Making the most of Taylor expansion and imaginary μ. J. Phys. Conf. Ser. 432, 012016 (2013). doi: 10.1088/1742-6596/432/1/012016http://doi.org/10.1088/1742-6596/432/1/012016
O. Philipsen, C. Pinke, The Nf=2 QCD chiral phase transition with Wilson fermions at zero and imaginary chemical potential. Phys. Rev. D 93, 114507 (2016). doi: 10.1103/PhysRevD.93.114507http://doi.org/10.1103/PhysRevD.93.114507
Z. Fodor, S. D. Katz, A New method to study lattice QCD at finite temperature and chemical potential. Phys. Lett. B 534, 87 (2002). doi: 10.1016/S0370-2693(02)01583-6http://doi.org/10.1016/S0370-2693(02)01583-6
K. Fukushima, C. Sasaki, The phase diagram of nuclear and quark matter at high baryon density. Prog. Part. Nucl. Phys. 72, 99 (2013). doi: 10.1016/j.ppnp.2013.05.003http://doi.org/10.1016/j.ppnp.2013.05.003
P. Braun-Munzinger, V. Koch, T. Schäfer et al., Properties of hot and dense matter from relativistic heavy ion collisions. Phys. Rept. 621, 76 (2016). doi: 10.1016/j.physrep.2015.12.003http://doi.org/10.1016/j.physrep.2015.12.003
A. Bashir, L. Chang, I. C. Cloet et al., Collective perspective on advances in Dyson-Schwinger Equation QCD. Commun. Theor. Phys. 58, 79-134 (2012). doi: 10.1088/0253-6102/58/1/16http://doi.org/10.1088/0253-6102/58/1/16
C. S. Fischer, QCD at finite temperature and chemical potential from Dyson-Schwinger equations, Prog. Part. Nucl. Phys. 105, 1-60 (2019). doi: 10.1016/j.ppnp.2019.01.002http://doi.org/10.1016/j.ppnp.2019.01.002
B. J. Schaefer, J. Wambach, Renormalization group approach towards the QCD phase diagram. Phys. Part. Nucl. 39, 1025-1032 (2008). doi: 10.1134/S1063779608070083http://doi.org/10.1134/S1063779608070083
H. Gies, Introduction to the functional RG and applications to gauge theories. Lect. Notes Phys. 852, 287-348 (2012). doi: 10.1007/978-3-642-27320-9_6http://doi.org/10.1007/978-3-642-27320-9_6
Y. Nambu, G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1. Phys. Rev. 122, 345-358 (1961). doi: 10.1103/PhysRev.122.345http://doi.org/10.1103/PhysRev.122.345
Y. Nambu, G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 2. Phys. Rev. 124, 246-254 (1961). doi: 10.1103/PhysRev.124.246http://doi.org/10.1103/PhysRev.124.246
C. Ratti, S. Roessner, M. A. Thaler et al., Thermodynamics of the PNJL model. Eur. Phys. J. C 49, 213 (2007). doi: 10.1140/epjc/s10052-006-0065-xhttp://doi.org/10.1140/epjc/s10052-006-0065-x
K. Fukushima, Phase diagrams in the three-flavor Nambu-Jona-Lasinio model with the Polyakov loop. Phys. Rev. D 77, 114028 (2008). doi: 10.1103/PhysRevD.77.114028http://doi.org/10.1103/PhysRevD.77.114028
B. J. Schaefer, J. Wambach, Susceptibilities near the QCD (tri)critical point. Phys. Rev. D 75, 085015 (2007). doi: 10.1103/PhysRevD.75.085015http://doi.org/10.1103/PhysRevD.75.085015
B. J. Schaefer, M. Wagner, The three-flavor chiral phase structure in hot and dense QCD matter. Phys. Rev. D 79, 014018 (2009). doi: 10.1103/PhysRevD.79.014018http://doi.org/10.1103/PhysRevD.79.014018
B. J. Schaefer, J. M. Pawlowski, J. Wambach, The Phase Structure of the Polyakov-Quark-Meson Model. Phys. Rev. D 76, 074023 (2007). doi: 10.1103/PhysRevD.76.074023http://doi.org/10.1103/PhysRevD.76.074023
B. J. Schaefer, M. Wagner, QCD critical region and higher moments for three flavor models. Phys. Rev. D 85, 034027 (2012). doi: 10.1103/PhysRevD.85.034027http://doi.org/10.1103/PhysRevD.85.034027
Z. Zhang, C. Shi, X. T. He et al., Chiral phase transition inside a rotating cylinder within the Nambu–Jona-Lasinio model. Phys. Rev. D 102, 114023 (2020). doi: 10.1103/PhysRevD.102.114023http://doi.org/10.1103/PhysRevD.102.114023
Y. Jiang, J. Liao, Pairing Phase Transitions of Matter under Rotation. Phys. Rev. Lett. 117, 192302 (2016). doi: 10.1103/PhysRevLett.117.192302http://doi.org/10.1103/PhysRevLett.117.192302
R. Gatto, M. Ruggieri, Deconfinement and Chiral Symmetry Restoration in a Strong Magnetic Background. Phys. Rev. D 83, 034016 (2011). doi: 10.1103/PhysRevD.83.034016http://doi.org/10.1103/PhysRevD.83.034016
K. Kashiwa, Entanglement between chiral and deconfinement transitions under strong uniform magnetic background field. Phys. Rev. D 83, 117901 (2011). doi: 10.1103/PhysRevD.83.117901http://doi.org/10.1103/PhysRevD.83.117901
M. D’Elia, F. Manigrasso, F. Negro et al., QCD phase diagram in a magnetic background for different values of the pion mass. Phys. Rev. D 98, 054509 (2018). doi: 10.1103/PhysRevD.98.054509http://doi.org/10.1103/PhysRevD.98.054509
G. S. Bali, F. Bruckmann, G. Endrodi et al., The QCD phase diagram for external magnetic fields. JHEP 1202, 044 (2012). doi: 10.1007/JHEP02(2012)044http://doi.org/10.1007/JHEP02(2012)044
Y. P. Zhao, R. R. Zhang, H. Zhang et al., Chiral phase transition from the Dyson-Schwinger equations in a finite spherical volume. Chin. Phys. C 43, 063101 (2019). doi: 10.1088/1674-1137/43/6/063101http://doi.org/10.1088/1674-1137/43/6/063101
R. A. Tripolt, J. Braun, B. Klein et al., Effect of fluctuations on the QCD critical point in a finite volume. Phys. Rev. D 90, 054012 (2014). doi: 10.1103/PhysRevD.90.054012http://doi.org/10.1103/PhysRevD.90.054012
A. Bhattacharyya, P. Deb, S. K. Ghosh et al., Thermodynamic Properties of Strongly Interacting Matter in Finite Volume using Polyakov-Nambu-Jona-Lasinio Model. Phys. Rev. D 87, 054009 (2013). doi: 10.1103/PhysRevD.87.054009http://doi.org/10.1103/PhysRevD.87.054009
N. Magdy, Influence of Finite Volume Effect on the Polyakov Quark–Meson Model. Universe 5, 94 (2019). doi: 10.3390/universe5040094http://doi.org/10.3390/universe5040094
P. Deb, S. Ghosh, J. Prakash et al., Finite size effect on Dissociation and Diffusion of chiral partners in Nambu-Jona-Lasinio model. Chin. Phys. C 46, 044102 (2022). doi: 10.1088/1674-1137/ac3defhttp://doi.org/10.1088/1674-1137/ac3def
Y. P. Zhao, S. Y. Zuo, C. M. Li, QCD chiral phase transition and critical exponents within the nonextensive Polyakov-Nambu-Jona-Lasinio model. Chin. Phys. C 45, 073105 (2021). doi: 10.1088/1674-1137/abf8a2http://doi.org/10.1088/1674-1137/abf8a2
K. M. Shen, H. Zhang, D. F. Hou et al., Chiral Phase Transition in Linear Sigma Model with Nonextensive Statistical Mechanics. Adv. High Energy Phys. 2017, 4135329 (2017). doi: 10.1155/2017/4135329http://doi.org/10.1155/2017/4135329
W. R. Tavares, R. L. S. Farias, S. S. Avancini, Deconfinement and chiral phase transitions in quark matter with a strong electric field. Phys. Rev. D 101, 016017 (2020). doi: 10.1103/PhysRevD.101.016017http://doi.org/10.1103/PhysRevD.101.016017
M. Ruggieri, Z. Y. Lu, G. X. Peng, Influence of chiral chemical potential, parallel electric, and magnetic fields on the critical temperature of QCD. Phys. Rev. D 94, 116003 (2016). doi: 10.1103/PhysRevD.94.116003http://doi.org/10.1103/PhysRevD.94.116003
G. Cao, X. G. Huang, Chiral phase transition and Schwinger mechanism in a pure electric field. Phys. Rev. D 93, 016007 (2016). doi: 10.1103/PhysRevD.93.016007http://doi.org/10.1103/PhysRevD.93.016007
C. Shi, X. T. He, W. B. Jia et al., Chiral transition and the chiral charge density of the hot and dense QCD matter. JHEP 2006, 122 (2020). doi: 10.1007/JHEP06(2020)122http://doi.org/10.1007/JHEP06(2020)122
Y. Lu, Z. F. Cui, Z. Pan et al., QCD phase diagram with a chiral chemical potential. Phys. Rev. D 93, 074037 (2016). doi: 10.1103/PhysRevD.93.074037http://doi.org/10.1103/PhysRevD.93.074037
L. Yu, H. Liu, M. Huang, Effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes. Phys. Rev. D 94, 014026 (2016). doi: 10.1103/PhysRevD.94.014026http://doi.org/10.1103/PhysRevD.94.014026
R. L. S. Farias, D. C. Duarte, G. Krein et al., Thermodynamics of quark matter with a chiral imbalance. Phys. Rev. D 94, 074011 (2016). doi: 10.1103/PhysRevD.94.074011http://doi.org/10.1103/PhysRevD.94.074011
C. Shen, L. Yan, Recent development of hydrodynamic modeling in heavy-ion collisions, Nucl. Sci. Tech. 31, 122 (2020). doi: 10.1007/s41365-020-00829-zhttp://doi.org/10.1007/s41365-020-00829-z
S. Wu, C. Shen, H. Song, Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review. Chin. Phys. Lett. 38, 081201 (2021). doi: 10.1088/0256-307X/38/8/081201http://doi.org/10.1088/0256-307X/38/8/081201
J. F. Xu, Bulk viscosity of interacting magnetized strange quark matter. Nucl. Sci. Tech. 32, 111 (2021). doi: 10.1007/s41365-021-00954-3http://doi.org/10.1007/s41365-021-00954-3
P. Romatschke, U. Romatschke, Viscosity Information from Relativistic Nuclear Collisions: How Perfect is the Fluid Observed at RHIC?. Phys. Rev. Lett. 99, 172301 (2007). doi: 10.1103/PhysRevLett.99.172301http://doi.org/10.1103/PhysRevLett.99.172301
R. Marty, E. Bratkovskaya, W. Cassing et al., Transport coefficients from the Nambu-Jona-Lasinio model for SU(3)f. Phys. Rev. C 88, 045204 (2013). doi: 10.1103/PhysRevC.88.045204http://doi.org/10.1103/PhysRevC.88.045204
S. Ghosh, T. C. Peixoto, V. Roy et al., Shear and bulk viscosities of quark matter from quark-meson fluctuations in the Nambu–Jona-Lasinio model. Phys. Rev. C 93, 045205 (2016). doi: 10.1103/PhysRevC.93.045205http://doi.org/10.1103/PhysRevC.93.045205
S. K. Ghosh, S. Raha, R. Ray et al., Shear viscosity and phase diagram from Polyakov–Nambu–Jona-Lasinio model. Phys. Rev. D 91, 054005 (2015). doi: 10.1103/PhysRevD.91.054005http://doi.org/10.1103/PhysRevD.91.054005
P. Zhuang, J. Hufner, S. P. Klevansky et al., Transport properties of a quark plasma and critical scattering at the chiral phase transition. Phys. Rev. D 51, 3728 (1995). doi: 10.1103/PhysRevD.51.3728http://doi.org/10.1103/PhysRevD.51.3728
P. Rehberg, S. P. Klevansky, J. Hufner, Elastic scattering and transport coefficients for a quark plasma in SU-f(3) at finite temperatures. Nucl. Phys. A 608, 356-388 (1996). doi: 10.1016/0375-9474(96)00247-3http://doi.org/10.1016/0375-9474(96)00247-3
V. Mykhaylova, M. Bluhm, K. Redlich et al., Quark-flavor dependence of the shear viscosity in a quasiparticle model. Phys. Rev. D 100, 034002 (2019). doi: 10.1103/PhysRevD.100.034002http://doi.org/10.1103/PhysRevD.100.034002
O. Soloveva, P. Moreau, E. Bratkovskaya, Transport coefficients for the hot quark-gluon plasma at finite chemical potential μB. Phys. Rev. C 101, 045203 (2020). doi: 10.1103/PhysRevC.101.045203http://doi.org/10.1103/PhysRevC.101.045203
H. B. Meyer, A Calculation of the shear viscosity in SU(3) gluodynamics. Phys. Rev. D 76, 101701 (2007). doi: 10.1103/PhysRevD.76.101701http://doi.org/10.1103/PhysRevD.76.101701
L. McLerran, V. Skokov, Comments About the Electromagnetic Field in Heavy-Ion Collisions. Nucl. Phys. A 929, 184 (2014). doi: 10.1016/j.nuclphysa.2014.05.008http://doi.org/10.1016/j.nuclphysa.2014.05.008
S. Gupta, The Electrical conductivity and soft photon emissivity of the QCD plasma. Phys. Lett. B 597, 57 (2004). doi: 10.1016/j.physletb.2004.05.079http://doi.org/10.1016/j.physletb.2004.05.079
Y. Yin, Electrical conductivity of the quark-gluon plasma and soft photon spectrum in heavy-ion collisions. Phys. Rev. C 90, 044903 (2014). doi: 10.1103/PhysRevC.90.044903http://doi.org/10.1103/PhysRevC.90.044903
J. Hammelmann, J. M. Torres-Rincon, J. B. Rose et al., Electrical conductivity and relaxation via colored noise in a hadronic gas. Phys. Rev. D 99, 076015 (2019). doi: 10.1103/PhysRevD.99.076015http://doi.org/10.1103/PhysRevD.99.076015
W. Cassing, O. Linnyk, T. Steinert et al., Electrical Conductivity of Hot QCD Matter. Phys. Rev. Lett. 110, 182301 (2013). doi: 10.1103/PhysRevLett.110.182301http://doi.org/10.1103/PhysRevLett.110.182301
M. Greif, I. Bouras, C. Greiner et al., Electric conductivity of the quark-gluon plasma investigated using a perturbative QCD based parton cascade. Phys. Rev. D 90, 094014 (2014). doi: 10.1103/PhysRevD.90.094014http://doi.org/10.1103/PhysRevD.90.094014
G. Aarts, A. Nikolaev, Electrical conductivity of the quark-gluon plasma: perspective from lattice QCD. Eur. Phys. J. A 57, 118 (2021). doi: 10.1140/epja/s10050-021-00436-5http://doi.org/10.1140/epja/s10050-021-00436-5
A. Amato, G. Aarts, C. Allton et al., Electrical conductivity of the quark-gluon plasma across the deconfinement transition. Phys. Rev. Lett. 111, 172001 (2013). doi: 10.1103/PhysRevLett.111.172001http://doi.org/10.1103/PhysRevLett.111.172001
A. Das, H. Mishra, R. K. Mohapatra, Transport coefficients of hot and dense hadron gas in a magnetic field: a relaxation time approach. Phys. Rev. D 100, 114004 (2019). doi: 10.1103/PhysRevD.100.114004http://doi.org/10.1103/PhysRevD.100.114004
G. P. Kadam, H. Mishra, L. Thakur, Electrical and thermal conductivities of hot and dense hadronic matter. Phys. Rev. D 98, 114001 (2018). doi: 10.1103/PhysRevD.98.114001http://doi.org/10.1103/PhysRevD.98.114001
V. Mykhaylova, C. Sasaki, Impact of quark quasiparticles on transport coefficients in hot QCD. Phys. Rev. D 103, 014007 (2021). doi: 10.1103/PhysRevD.103.014007http://doi.org/10.1103/PhysRevD.103.014007
P. K. Srivastava, L. Thakur, B. K. Patra, Electrical Conductivity of an Anisotropic Quark Gluon Plasma: A Quasiparticle Approach. Phys. Rev. C 91, 044903 (2015). doi: 10.1103/PhysRevC.91.044903http://doi.org/10.1103/PhysRevC.91.044903
O. Soloveva, D. Fuseau, J. Aichelin et al., Shear viscosity and electric conductivity of a hot and dense QGP with a chiral phase transition. Phys. Rev. C 103, 054901 (2021). doi: 10.1103/PhysRevC.103.054901http://doi.org/10.1103/PhysRevC.103.054901
P. Sahoo, S. K. Tiwari, R. Sahoo, Electrical conductivity of hot and dense QCD matter created in heavy-ion collisions: A color string percolation approach. Phys. Rev. D 98, 054005 (2018). doi: 10.1103/PhysRevD.98.054005http://doi.org/10.1103/PhysRevD.98.054005
S. Jain, Universal thermal and electrical conductivity from holography. JHEP 1011, 092 (2010). doi: 10.1007/JHEP11(2010)092http://doi.org/10.1007/JHEP11(2010)092
L. Thakur, P. K. Srivastava, Electrical conductivity of a hot and dense QGP medium in a magnetic field. Phys. Rev. D 100, 076016 (2019). doi: 10.1103/PhysRevD.100.076016http://doi.org/10.1103/PhysRevD.100.076016
M. Kurian, V. Chandra, Effective description of hot QCD medium in strong magnetic field and longitudinal conductivity. Phys. Rev. D 96, 114026 (2017). doi: 10.1103/PhysRevD.96.114026http://doi.org/10.1103/PhysRevD.96.114026
S. Rath, B. K. Patra, Effect of magnetic field on the charge and thermal transport properties of hot and dense QCD matter. Eur. Phys. J. C 80, 747 (2020). doi: 10.1140/epjc/s10052-020-8331-xhttp://doi.org/10.1140/epjc/s10052-020-8331-x
A. Das, H. Mishra, R. K. Mohapatra, Magneto-Seebeck coefficient and Nernst coefficient of a hot and dense hadron gas. Phys. Rev. D 102, 014030 (2020). doi: 10.1103/PhysRevD.102.014030http://doi.org/10.1103/PhysRevD.102.014030
J. R. Bhatt, A. Das, H. Mishra, Thermoelectric effect and Seebeck coefficient for hot and dense hadronic matter. Phys. Rev. D 99, 014015 (2019). doi: 10.1103/PhysRevD.99.014015http://doi.org/10.1103/PhysRevD.99.014015
H. X. Zhang, J. W. Kang, B. W. Zhang, Thermoelectric properties of the (an-)isotropic QGP in magnetic fields. Eur. Phys. J. C 81, 623 (2021). doi: 10.1140/epjc/s10052-021-09409-whttp://doi.org/10.1140/epjc/s10052-021-09409-w
D. Dey, B. K. Patra, Seebeck effect in a thermal QCD medium in the presence of strong magnetic field. Phys. Rev. D 102, 096011 (2020). doi: 10.1103/PhysRevD.102.096011http://doi.org/10.1103/PhysRevD.102.096011
A. Abhishek, A. Das, D. Kumar et al., Thermoelectric transport coefficients of quark matter. Eur. Phys. J. C 82, 71 (2022). doi: 10.1140/epjc/s10052-022-09999-zhttp://doi.org/10.1140/epjc/s10052-022-09999-z
M. Strickland, Anisotropic Hydrodynamics: Three lectures. Acta Phys. Polon. B 45, 2355-2394 (2014). doi: 10.5506/APhysPolB.45.2355http://doi.org/10.5506/APhysPolB.45.2355
P. Romatschke, M. Strickland, Collective modes of an anisotropic quark gluon plasma. Phys. Rev. D 68, 036004 (2003). doi: 10.1103/PhysRevD.68.036004http://doi.org/10.1103/PhysRevD.68.036004
B. S. Kasmaei, M. Strickland, Photon production and elliptic flow from a momentum-anisotropic quark-gluon plasma. Phys. Rev. D 102, 014037 (2020). doi: 10.1103/PhysRevD.102.014037http://doi.org/10.1103/PhysRevD.102.014037
B. Schenke, M. Strickland, Photon production from an anisotropic quark-gluon plasma. Phys. Rev. D 76, 025023 (2007). doi: 10.1103/PhysRevD.76.025023http://doi.org/10.1103/PhysRevD.76.025023
B. S. Kasmaei, M. Strickland, Parton self-energies for general momentum-space anisotropy. Phys. Rev. D 97, 054022 (2018). doi: 10.1103/PhysRevD.97.054022http://doi.org/10.1103/PhysRevD.97.054022
R. Ghosh, B. Karmakar, A. Mukherjee, Covariant formulation of gluon self-energy in presence of ellipsoidal anisotropy. Phys. Rev. D 102, 114002 (2020). doi: 10.1103/PhysRevD.102.114002http://doi.org/10.1103/PhysRevD.102.114002
A. Dumitru, Y. Guo, M. Strickland, The Heavy-quark potential in an anisotropic (viscous) plasma. Phys. Lett. B 662, 37 (2008). doi: 10.1016/j.physletb.2008.02.048http://doi.org/10.1016/j.physletb.2008.02.048
L. Thakur, P. K. Srivastava, G. P. Kadam et al., Shear viscosity η to electrical conductivity σel ratio for an anisotropic QGP. Phys. Rev. D 95, 096009 (2017). doi: 10.1103/PhysRevD.95.096009http://doi.org/10.1103/PhysRevD.95.096009
S. Rath, B. K. Patra, Revisit to electrical and thermal conductivities, Lorenz and Knudsen numbers in thermal QCD in a strong magnetic field. Phys. Rev. D 100, 016009 (2019). doi: 10.1103/PhysRevD.100.016009http://doi.org/10.1103/PhysRevD.100.016009
R. Baier, Y. Mehtar-Tani, Jet quenching and broadening: The Transport coefficient q-hat in an anisotropic plasma. Phys. Rev. C 78, 064906 (2008). doi: 10.1103/PhysRevC.78.064906http://doi.org/10.1103/PhysRevC.78.064906
M. Alqahtani, M. Nopoush, M. Strickland, Relativistic anisotropic hydrodynamics. Prog. Part. Nucl. Phys. 101, 204 (2018). doi: 10.1016/j.ppnp.2018.05.004http://doi.org/10.1016/j.ppnp.2018.05.004
W. M. Zhang, L. Wilets, Transport theory of relativistic heavy ion collisions with chiral symmetry. Phys. Rev. C 45, 1900-1917 (1992). doi: 10.1103/PhysRevC.45.1900http://doi.org/10.1103/PhysRevC.45.1900
W. Botermans, R. Malfliet, Quantum transport theory of nuclear matter. Phys. Rept. 198, 115-194 (1990). doi: 10.1016/0370-1573(90)90174-Zhttp://doi.org/10.1016/0370-1573(90)90174-Z
P. Rehberg, Relativistic transport theory for systems containing bound states. Phys. Rev. C 57, 3299-3313 (1998). doi: 10.1103/PhysRevC.57.3299http://doi.org/10.1103/PhysRevC.57.3299
P. Rehberg, J. Hufner, A Numerical study of an expanding plasma of quarks in a chiral model. Nucl. Phys. A 635, 511-541 (1998). doi: 10.1016/S0375-9474(98)00184-5http://doi.org/10.1016/S0375-9474(98)00184-5
S. P. Klevansky, A. Ogura, J. Hufner, Derivation of transport equations for a strongly interacting Lagrangian in powers of anti-H and 1 / N(c). Annals Phys. 261, 37-73 (1997). doi: 10.1006/aphy.1997.5734http://doi.org/10.1006/aphy.1997.5734
S. P. Klevansky, Chiral symmetry breaking in hot matter. Lect. Notes Phys. 516, 113-161 (1999). doi: 10.1007/BFb0107313http://doi.org/10.1007/BFb0107313
Z. Wang, S. Shi, P. Zhuang, Chiral Phase Transition in an Expanding Quark System. Phys. Rev. C 103, 014901 (2021). doi: 10.1103/PhysRevC.103.014901http://doi.org/10.1103/PhysRevC.103.014901
P. Rehberg, S. P. Klevansky, J. Hufner, Hadronization in the SU(3) Nambu-Jona-Lasinio model. Phys. Rev. C 53, 410 (1996). doi: 10.1103/PhysRevC.53.410http://doi.org/10.1103/PhysRevC.53.410
P. Rehberg, Y. L. Kalinovsky, D. Blaschke, Critical scattering and two photon spectra for a quark / meson plasma. Nucl. Phys. A 622, 478 (1997). doi: 10.1016/S0375-9474(97)82592-4http://doi.org/10.1016/S0375-9474(97)82592-4
P. Rehberg, S. P. Klevansky, One loop integrals at finite temperature and density. Annals Phys. 252, 422 (1996). doi: 10.1006/aphy.1996.0140http://doi.org/10.1006/aphy.1996.0140
A. L. Fetter, J. D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill Book Co, New York, 1971).
A. Dumitru, Y. Guo, M. Strickland, The Imaginary part of the static gluon propagator in an anisotropic (viscous) QCD plasma. Phys. Rev. D 79, 114003 (2009). doi: 10.1103/PhysRevD.79.114003http://doi.org/10.1103/PhysRevD.79.114003
P. Romatschke, Momentum broadening in an anisotropic plasma. Phys. Rev. C 75, 014901 (2007). doi: 10.1103/PhysRevC.75.014901http://doi.org/10.1103/PhysRevC.75.014901
M. Asakawa, S. A. Bass, B. Muller, Anomalous transport processes in anisotropically expanding quark-gluon plasmas. Prog. Theor. Phys. 116, 725 (2007). doi: 10.1143/PTP.116.725http://doi.org/10.1143/PTP.116.725
A. Dumitru, Y. Guo, A. Mocsy et al., Quarkonium states in an anisotropic QCD plasma. Phys. Rev. D 79, 054019 (2009). doi: 10.1103/PhysRevD.79.054019http://doi.org/10.1103/PhysRevD.79.054019
A. Hosoya, K. Kajantie, Transport Coefficients of QCD Matter. Nucl. Phys. B 250, 666 (1985). doi: 10.1016/0550-3213(85)90499-7http://doi.org/10.1016/0550-3213(85)90499-7
L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987).
A. Jaiswal, B. Friman, K. Redlich, Relativistic second-order dissipative hydrodynamics at finite chemical potential. Phys. Lett. B 751, 548 (2015). doi: 10.1016/j.physletb.2015.11.018http://doi.org/10.1016/j.physletb.2015.11.018
D. M. Rowe, Thermoelectrics and its Energy Harvesting Vol 1 (CRC Press, Boca Raton, 2012).
H. J. Goldsmid, Thermoelectric Refrigeration, (Plenum Press, New York, 1964).
P. Danielewicz, M. Gyulassy, Dissipative Phenomena in Quark Gluon Plasmas. Phys. Rev. D 31, 53 (1985). doi: 10.1103/PhysRevD.31.53http://doi.org/10.1103/PhysRevD.31.53
M. Buballa, NJL model analysis of quark matter at large density. Phys. Rept. 407, 205-376 (2005). doi: 10.1016/j.physrep.2004.11.004http://doi.org/10.1016/j.physrep.2004.11.004
N. Chaudhuri, S. Ghosh, S. Sarkar et al., Effect of the anomalous magnetic moment of quarks on the phase structure and mesonic properties in the NJL model. Phys. Rev. D 99, 116025 (2019). doi: 10.1103/PhysRevD.99.116025http://doi.org/10.1103/PhysRevD.99.116025
M. Martinez, M. Strickland, Pre-equilibrium dilepton production from an anisotropic quark-gluon plasma. Phys. Rev. C 78, 034917 (2008). doi: 10.1103/PhysRevC.78.034917http://doi.org/10.1103/PhysRevC.78.034917
A. V. Friesen, Y. V. Kalinovsky, V. D. Toneev, Quark scattering off quarks and hadrons. Nucl. Phys. A 923, 1 (2014). doi: 10.1016/j.nuclphysa.2014.01.002http://doi.org/10.1016/j.nuclphysa.2014.01.002
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution