1.Department of Computing, Changzhi University, Changzhi 046011, China
2.Department of Physics, Changzhi University, Changzhi 046011, China
3.Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
† zhangfan@mail.bnu.edu.cn
‡ sujun3@mail.sysu.edu.cn
Scan for full text
Yong-Yi Li, Fan Zhang, Jun Su. Improvement of the Bayesian neural network to study the photoneutron yield cross sections. [J]. Nuclear Science and Techniques 33(11):135(2022)
Yong-Yi Li, Fan Zhang, Jun Su. Improvement of the Bayesian neural network to study the photoneutron yield cross sections. [J]. Nuclear Science and Techniques 33(11):135(2022) DOI: 10.1007/s41365-022-01131-w.
This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number ,Z, mass number ,A, and incident energy ,ε,. The BNN was improved in terms of three aspects: numerical parameters, input layer, and network structure. First, by minimizing the deviations between the predictions and data, the numerical parameters, including the hidden layer number, hidden node number, and activation function, were selected. It was found that the BNN with three hidden layers, 10 hidden nodes, and sigmoid activation function provided the smallest deviations. Second, based on known knowledge, such as the isospin dependence and shape effect, the optimal ground-state properties were selected as input neurons. Third, the Lorentzian function was applied to map the hidden nodes to the output cross sections, and the empirical formula of the Lorentzian parameters was applied to link some of the input nodes to the output cross sections. It was found that the last two aspects improved the predictions and avoided overfitting, especially for the axially deformed nucleus.
Bayesian neural networkPhotoneutron cross sectionsGiant dipole resonance
Z. Niu, H. Liang, Nuclear mass predictions based on bayesian neural network approach with pairing and shell effects. Physics Letters B 778, 48–53 (2018). doi: 10.1016/j.physletb.2018.01.002http://doi.org/10.1016/j.physletb.2018.01.002
Z.A. Wang, J. Pei, Y. Liu, et al., Bayesian evaluation of incomplete fission yields. Physical review letters 123, 122501 (2019). doi: 10.1103/PhysRevLett.123.122501http://doi.org/10.1103/PhysRevLett.123.122501
R. Wang, Z. Zhang, L.W. Chen, et al., Constraining the in-medium nucleon-nucleon cross section from the width of nuclear giant dipole resonance. Physics Letters B 807, 135532 (2020). doi: 10.1016/j.physletb.2020.135532http://doi.org/10.1016/j.physletb.2020.135532
X.C. Ming, H.F. Zhang, R.R. Xu, et al., Nuclear mass based on the multi-task learning neural network method. Nuclear Science and Techniques 33, 48 (2022). doi: 10.1007/s41365-022-01031-zhttp://doi.org/10.1007/s41365-022-01031-z
Z.P. Gao, Y.J. Wang, H.L. Lü, et al., Machine learning the nuclear mass. Nuclear Science and Techniques 32, 109 (2021). doi: 10.1007/s41365-021-00956-1http://doi.org/10.1007/s41365-021-00956-1
C.W. Ma, X.B. Wei, X.X. Chen, et al., Precise machine learning models for fragment production in projectile fragmentation reactions using bayesian neural networks. Chinese Physics C 46, 074104 (2022). doi: 10.1088/1674-1137/ac5efbhttp://doi.org/10.1088/1674-1137/ac5efb
K. Gernoth, J. Clark, J. Prater, et al., Neural network models of nuclear systematics. Physics Letters B 300, 1–7 (1993). doi: 10.1016/0370-2693(93)90738-4http://doi.org/10.1016/0370-2693(93)90738-4
S. Athanassopoulos, E. Mavrommatis, K. Gernoth, et al., Nuclear mass systematics using neural networks. Nuclear Physics A 743, 222–235 (2004). doi: 10.1016/j.nuclphysa.2004.08.006http://doi.org/10.1016/j.nuclphysa.2004.08.006
D. Benzaid, S. Bentridi, A. Kerraci, et al., Bethe–weizsäcker semiempirical mass formula coefficients 2019 update based on ame2016. Nuclear Science and Techniques 31, 9 (2020). doi: 10.1007/s41365-019-0718-8http://doi.org/10.1007/s41365-019-0718-8
N. Costiris, E. Mavrommatis, K.A. Gernoth, et al., Decoding β-decay systematics: A global statistical model forβ- half-lives. Physical Review C 80, 044332 (2009). doi: 10.1103/PhysRevC.80.044332http://doi.org/10.1103/PhysRevC.80.044332
T. Bayram, S. Akkoyun, S.O. Kara, A study on ground-state energies of nuclei by using neural networks. Annals of Nuclear Energy 63, 172–175 (2014). doi: 10.1016/j.anucene.2013.07.039http://doi.org/10.1016/j.anucene.2013.07.039
Z. Niu, H. Liang, B. Sun, et al., Predictions of nuclearβ-decay half-lives with machine learning and their impact on r-process nucleosynthesis. Physical Review C 99, 064307 (2019). doi: 10.1103/PhysRevC.99.064307http://doi.org/10.1103/PhysRevC.99.064307
W. Jiang, G. Hagen, T. Papenbrock, Extrapolation of nuclear structure observables with artificial neural networks. Physical Review C 100, 054326 (2019). doi: 10.1103/PhysRevC.100.054326http://doi.org/10.1103/PhysRevC.100.054326
X.X. Dong, R. An, J.X. Lu, et al., Novel bayesian neural network based approach for nuclear charge radii. Physical Review C 105, 014308 (2022). doi: 10.1103/PhysRevC.105.014308http://doi.org/10.1103/PhysRevC.105.014308
D. Wu, C. Bai, H. Sagawa, et al., Calculation of nuclear charge radii with a trained feed-forward neural network. Physical Review C 102, 054323 (2020). doi: 10.1103/PhysRevC.102.054323http://doi.org/10.1103/PhysRevC.102.054323
X. Zhang, X. Liu, Y. Huang, et al., Determining impact parameters of heavy-ion collisions at low-intermediate incident energies using deep learning with convolutional neural networks. Physical Review C 105, 034611 (2022). doi: 10.1103/PhysRevC.105.034611http://doi.org/10.1103/PhysRevC.105.034611
X.Z. Li, Q.X. Zhang, H.Y. Tan, et al., Fast nuclide identification based on a sequential bayesian method. Nuclear Science and Techniques 32, 143 (2021). doi: 10.1007/s41365-021-00982-zhttp://doi.org/10.1007/s41365-021-00982-z
H.R. Liu, Y.X. Cheng, Z. Zuo, et al., Discrimination of neutrons and gamma rays in plastic scintillator based on pulse-coupled neural network. Nuclear Science and Techniques 32, 82 (2021). doi: 10.1007/s41365-021-00915-whttp://doi.org/10.1007/s41365-021-00915-w
T.Y. Huang, Z.G. Li, K. Wang, et al., Hybrid windowed networks for on-the-fly doppler broadening in rmc code. Nuclear Science and Techniques 32, 62 (2021). doi: 10.1007/s41365-021-00901-2http://doi.org/10.1007/s41365-021-00901-2
K. Chen, L.B. Zhang, J.S. Liu, et al., Robust restoration of low-dose cerebral perfusion ct images using ncs-unet. Nuclear Science and Techniques 33, 30 (2022). doi: 10.1007/s41365-022-01014-0http://doi.org/10.1007/s41365-022-01014-0
Y.J. Ma, Y. Ren, P. Feng, et al., Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography. Nuclear Science and Techniques 32, 41 (2021). doi: 10.1007/s41365-021-00874-2http://doi.org/10.1007/s41365-021-00874-2
R. Utama, J. Piekarewicz, H. Prosper, Nuclear mass predictions for the crustal composition of neutron stars: A bayesian neural network approach. Physical Review C 93, 014311 (2016). doi: 10.1103/PhysRevC.93.014311http://doi.org/10.1103/PhysRevC.93.014311
R. Utama, W.C. Chen, J. Piekarewicz, Nuclear charge radii: density functional theory meets bayesian neural networks. Journal of Physics G: Nuclear and Particle Physics 43, 114002 (2016). doi: 10.1088/0954-3899/43/11/114002http://doi.org/10.1088/0954-3899/43/11/114002
L. Neufcourt, Y. Cao, W. Nazarewicz, et al., Bayesian approach to model-based extrapolation of nuclear observables. Physical Review C 98, 034318 (2018). doi: 10.1103/PhysRevC.98.034318http://doi.org/10.1103/PhysRevC.98.034318
C.W. Ma, D. Peng, H.L. Wei, et al., Isotopic cross-sections in proton induced spallation reactions based on the bayesian neural network method. Chinese Physics C 44, 014104 (2020). doi: 10.1088/1674-1137/44/1/014104http://doi.org/10.1088/1674-1137/44/1/014104
J. Bai, Z. Niu, B. Sun, et al., The description of giant dipole resonance key parameters with multitask neural networks. Physics Letters B 815, 136147 (2021). doi: 10.1016/j.physletb.2021.136147http://doi.org/10.1016/j.physletb.2021.136147
X. Wang, L. Zhu, J. Su, Providing physics guidance in bayesian neural networks from the input layer: The case of giant dipole resonance predictions. Physical Review C 104, 034317 (2021). doi: 10.1103/PhysRevC.104.034317http://doi.org/10.1103/PhysRevC.104.034317
G. Baldwin, G. Klaiber, Photo-fission in heavy elements. Physical Review 71, 3 (1947). doi: 10.1103/PhysRev.71.3http://doi.org/10.1103/PhysRev.71.3
M.T. Jin, S.Y. Xu, G.M. Yang, et al., Yield of long-lived fission product transmutation using proton-, deuteron-, and alpha particle-induced spallation. Nuclear Science and Techniques 32, 96 (2021). doi: 10.1007/s41365-021-00933-8http://doi.org/10.1007/s41365-021-00933-8
V. Plujko, O. Gorbachenko, R. Capote, et al., Giant dipole resonance parameters of ground-state photoabsorption: Experimental values with uncertainties. Atomic Data and Nuclear Data Tables 123, 1–85 (2018). doi: 10.1016/j.adt.2018.03.002http://doi.org/10.1016/j.adt.2018.03.002
T. Kawano, Y. Cho, P. Dimitriou, et al., Iaea photonuclear data library 2019. Nuclear Data Sheets 163, 109–162 (2020). doi: 10.1016/j.nds.2019.12.002http://doi.org/10.1016/j.nds.2019.12.002
D. Savran, T. Aumann, A. Zilges, Experimental studies of the pygmy dipole resonance. Progress in Particle and Nuclear Physics 70, 210–245 (2013). doi: 10.1016/j.ppnp.2013.02.003http://doi.org/10.1016/j.ppnp.2013.02.003
A. Bracco, E. Lanza, A. Tamii, Isoscalar and isovector dipole excitations: Nuclear properties from low-lying states and from the isovector giant dipole resonance. Progress in Particle and Nuclear Physics 106, 360–433 (2019). doi: 10.1016/j.ppnp.2019.02.001http://doi.org/10.1016/j.ppnp.2019.02.001
V. Semkova, N. Otuka, M. Mikhailiukova, et al., in EPJ Web of Conferences, Exfor–a global experimental nuclear reaction data repository: Status and new developments. Vol. 146, EDP Sciences, 2017, p. 07003, doi: 10.1051/epjconf/201714607003http://doi.org/10.1051/epjconf/201714607003
J.Y. Tang, Q. An, J.B. Bai, et al., Back-n white neutron source at csns and its applications. Nuclear Science and Techniques 32, 11 (2021). doi: 10.1007/s41365-021-00846-6http://doi.org/10.1007/s41365-021-00846-6
Y.T. Li, W.P. Lin, B.S. Gao, et al., Development of a low-background neutron detector array. Nuclear Science and Techniques 33, 41 (2022). doi: 10.1007/s41365-022-01030-0http://doi.org/10.1007/s41365-022-01030-0
D.J. MacKay, A practical bayesian framework for backpropagation networks. Neural computation 4, 448–472 (1992). doi: 10.1162/neco.1992.4.3.448http://doi.org/10.1162/neco.1992.4.3.448
X. Wang, L. Zhu, J. Su, Providing physics guidance in bayesian neural networks from the input layer: The case of giant dipole resonance predictions. Physical Review C 104, 034317 (2021). doi: 10.1103/PhysRevC.104.034317http://doi.org/10.1103/PhysRevC.104.034317
J. Su, Constraining symmetry energy at subnormal density by isovector giant dipole resonances of spherical nuclei. Chinese Physics C 43, 064109 (2019). doi: 10.1088/1674-1137/43/6/064109http://doi.org/10.1088/1674-1137/43/6/064109
A.A.B. Mennana, Y.E. Bassem, M. Oulne, Giant dipole resonance and shape evolution in nd isotopes within tdhf method. Physica Scripta 95, 065301 (2020). doi: 10.1088/1402-4896/ab73d8http://doi.org/10.1088/1402-4896/ab73d8
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution