1.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Van Swinderen Institute, University of Groningen, Groningen 9747 AA, the Netherlands
† wangqian2016@impcas.ac.cn
Scan for full text
Qian Wang, Xin-Liang Yan, Xiang-Cheng Chen, et al. Spectral baseline estimation using penalized least squares with weights derived from the Bayesian method. [J]. Nuclear Science and Techniques 33(11):148(2022)
Qian Wang, Xin-Liang Yan, Xiang-Cheng Chen, et al. Spectral baseline estimation using penalized least squares with weights derived from the Bayesian method. [J]. Nuclear Science and Techniques 33(11):148(2022) DOI: 10.1007/s41365-022-01132-9.
The penalized least squares (PLS) method with appropriate weights has proven to be a successful baseline estimation method for various spectral analyses. It can extract the baseline from the spectrum while retaining the signal peaks in the presence of random noise. The algorithm is implemented by iterating over the weights of the data points. In this study, we propose a new approach for assigning weights based on the Bayesian rule. The proposed method provides a self-consistent weighting formula and performs well, particularly for baselines with different curvature components. This method was applied to analyze Schottky spectra obtained in ,86,Kr projectile fragmentation measurements in the experimental Cooler Storage Ring (CSRe) at Lanzhou. It provides an accurate and reliable storage lifetime with a smaller error bar than existing PLS methods. It is also a universal baseline-subtraction algorithm that can be used for spectrum-related experiments, such as precision nuclear mass and lifetime measurements in storage rings.
Penalized least squaresBaseline correctionBayesian ruleSpectrum analysis
F. Gan, G. H. Ruan, J. Y. Mo, Baseline correction by improved iterative polynomial fitting with automatic threshold. Chemom. Intell. Lab. Syst. 82(1–2), 59–65 (2006). doi: 10.1016/j.chemolab.2005.08.009http://doi.org/10.1016/j.chemolab.2005.08.009
Z.M. Zhang, S. Chen, Y.Z. Liang et al., An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy: Background-correction algorithm for highly fluorescent samples in Raman spectroscopy. J. Raman Spectrosc. 41(6), 659–669 (2009). doi: 10.1002/jrs.2500http://doi.org/10.1002/jrs.2500
A. Jirasek, G. Schulze, M.M.L. Yu et al., Accuracy and Precision of Manual Baseline Determination. Appl. Spectrosc. 58(12), 1488-1499 (2004). doi: 10.1366/0003702042641236http://doi.org/10.1366/0003702042641236
W. von der Linden, V. Dose, L. Padayachee et al., Signal and background separation. Phys. Rev. E. 59(6), 6527–6534 (1999). doi: 10.1103/physreve.59.6527http://doi.org/10.1103/physreve.59.6527
M. A. Kneen, H. J. Annegarn, Algorithm for fitting XRF, SEM and PIXE X-ray spectra backgrounds. Nucl. Instr. Meth. B 109/110, 209–213 (1996). doi: 10.1016/0168-583X(95)00908-6http://doi.org/10.1016/0168-583X(95)00908-6
X.G. Ma, Z.X. Zhang, Application of wavelet transform to background correction in inductively coupled plasma atomic emission spectrometry. Anal. Chim. Acta 485(2), 233-239 (2003). doi: 10.1016/S0003-2670(03)00395-7http://doi.org/10.1016/S0003-2670(03)00395-7
M. Morháč, V. Matoušek, Peak Clipping Algorithms for Background Estimation in Spectroscopic Data. Appl. Spectrosc. 62(1), 91–206 (2008). doi: 10.1366/000370208783412762http://doi.org/10.1366/000370208783412762
C. G. Ryan, E. Clayton, W. L. Griffin et al., SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl. Instr. Meth. B 34, 396–402 (2013). doi: 10.1016/0168-583X(88)90063-8http://doi.org/10.1016/0168-583X(88)90063-8
J. C. Lindon, G. E. Tranter, D. W. Koppenaal, Encyclopedia of spectroscopy and spectrometry, 2nd edn. (Elservier Academic Press, Oxford, 2010).
E. T. Whittaker, On a new method of graduation. P. Edinburgh Math. Soc. 41, 63–75 (1922). doi: 10.1017/S0013091500077853http://doi.org/10.1017/S0013091500077853
R. J. Hodrick, E. C. Prescott, Postwar U.S. business cycles: An empirical investigation. J. Money, Credit Banking 29(1), 1–16 (1997). doi: 10.2307/2953682http://doi.org/10.2307/2953682
P. H. C. Eilers, A perfect smoother. Anal. Chem. 75(14), 3631-3636 (2003). doi: 10.1021/ac034173thttp://doi.org/10.1021/ac034173t
P. H. C. Eilers, V. Pesendorfer, R. Bonifacio, in Proc. 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Bruges, June 2017.
P. H. C. Eilers, Parametric time warping. Anal. Chem. 76(2), 404–411 (2004). doi: 10.1021/ac034800ehttp://doi.org/10.1021/ac034800e
Z. M. Zhang, S. Chen, Y. Z. Liang, Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 135(5), 1138–1146 (2010). doi: 10.1039/b922045chttp://doi.org/10.1039/b922045c
S. J. Baek, A. Park, Y. J. Anh, J. Choo, Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst 140(1), 250–257 (2015). doi: 10.1039/C4AN01061Bhttp://doi.org/10.1039/C4AN01061B
W. K. Newey, J. L. Powell, Asymmetric Least Squares Estimation and Testing. Econometrica 55(4), 819–847 (1987). doi: 10.2307/1911031http://doi.org/10.2307/1911031
D. S. Sivia, in MAXENT96 - Proceedings of the Maximum Entropy Conference, Port Elizabeth, 1996, ed. by M. Sears, V. Nedeljkovic, N. E. Pendock, and S. Sibisi, p. 131
D. S. Sivia, J. Skilling, Data analysis: a Bayesian tutorial, 2nd edn. (Oxford University Press, Oxford, 2006), pp. 5–13
B. Carlson, P. B. Crilly, Communication systems: An introduction to signals and noise in electrical communication, 5th edn. (McGraw-Hill Higher Education, Boston, 2010), pp. 423–426
G. C.-Y. Chan, in Encyclopedia of Analytical Science, (3rd edn) by P. Worsfold, C. Poole, A. Townshend, M. Miró (Elsevier, Amsterdam Oxford Cambridge, 2019), pp. 194–299 doi: 10.1016/B978-0-12-409547-2.14487-7http://doi.org/10.1016/B978-0-12-409547-2.14487-7
H.W. Wang, G.T. Fan, L.X. Liu et al., Commissioning of laser electron gamma beamline SLEGS at SSRF. Nucl. Sci, Tech. 33, 87 (2022). doi: 10.1007/s41365-022-01076-0http://doi.org/10.1007/s41365-022-01076-0
R.M.J. Li, S.K. Liu, S. T. Lin et al., Identification of anomalous fast bulk events in a p-type point-contact germanium detector. Nucl. Sci, Tech. 33, 57 (2022). doi: 10.1007/s41365-022-01041-xhttp://doi.org/10.1007/s41365-022-01041-x
C. Trageser, C. Brandau, C. Kozhuharov et al., A new data acquisition system for Schottky signals in atomic physics experiments at GSI’s and FAIR’s storage rings. Phys. Scr. T166, 014062 (2015). doi: 10.1088/0031-8949/2015/T166/014062http://doi.org/10.1088/0031-8949/2015/T166/014062
D. Chicco, M. J. Warrens, G. Jurman, The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peer. J. Comput Sci. (2021). doi: 10.7717/peerj-cs.623http://doi.org/10.7717/peerj-cs.623
Yu. A. Litvinov, H. Geissel, T. Radon et al., Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRS-ESR facility. Nucl. Phys. A 756(1–2), 3–38 (2005). doi: 10.1016/j.nuclphysa.2005.03.015http://doi.org/10.1016/j.nuclphysa.2005.03.015
Yu. A. Litvinov. S. Bishop, K. Blaum et al., Nuclear physics experiments with ion storage rings. Nucl. Instr. Meth. B 317, 603–616 (2013). doi: 10.1016/j.nimb.2013.07.025http://doi.org/10.1016/j.nimb.2013.07.025
S. Chattopadhyay, Some fundamental aspects of fluctuations and coherence in charged-particle beams in storage rings, AIP Conf. Proc 127, 467 (1985). doi: 10.1063/1.35175http://doi.org/10.1063/1.35175
B. Franzke, The heavy ion storage and cooler ring project ESR at GSI, Nucl. Instr. Meth. B 24–25, 18–25 (1987). doi: 10.1016/0168-583X(87)90583-0http://doi.org/10.1016/0168-583X(87)90583-0
W.L. Zhan, J.W. Xia, B.W. Wei et al. HIRFL-CSR project, AIP Conf. Proc 600, 175 (2001). doi: 10.1063/1.1435229http://doi.org/10.1063/1.1435229
B. Franzke, H. Geissel, G. Münzenberg, Mass and lifetime measurements of exotic nuclei in storage rings, Mass Spec. Rev. 27, 428–469 (2008). doi: 10.1002/mas.20173http://doi.org/10.1002/mas.20173
B. Bosch, Yu. A. Litvinov, T. Stöhlker, Nuclear physics with unstable ions at storage rings, Prog. Part. Nucl. Phys. 73, 84–140 (2013). doi: 10.1016/j.ppnp.2013.07.002http://doi.org/10.1016/j.ppnp.2013.07.002
Yu. A. Litvinov, F. Bosch, Beta decay of highly charged ions, Rep. Prog. Phys 74(1), 016301 (2011). doi: 10.1088/0034-4885/74/1/016301http://doi.org/10.1088/0034-4885/74/1/016301
Yu. A. Litvinov, Ph.D. thesis, der Justus-Liebig Universität Gieflen, 2003.
X. L. Tu, X. C. Chen, J. T. Zhang et al. First application of combined isochronous and Schottky mass spectrometry: Half-lives of fully ionized 49CR24+ and 53Fe26+ atoms, Phys. Rev. C 97, 014321 (2018). doi: 10.1103/PhysRevC.97.014321http://doi.org/10.1103/PhysRevC.97.014321
X. C. Chen, Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg, 2015.
X. C. Chen, Yu. A. Litvinov, M. Wang et al., Denoising scheme based on singular-value decomposition for one-dimensional spectra and its application in precision storage-ring mass spectrometry. Phys. Rev. E 99(6), 063320 (2019). doi: 10.1103/PhysRevE.99.063320http://doi.org/10.1103/PhysRevE.99.063320
C.W. Ma, D. Peng, H.L. Wei et al., A Bayesian-neural-network prediction for fragment production in proton induced spallation reaction, Chin. Phys. C 44(12), 124107 (2020). doi: 10.1088/1674-1137/abb657http://doi.org/10.1088/1674-1137/abb657
C.W. Ma, H.L. Wei, X.Q. Liu et al., Nuclear fragments in projectile fragmentation reactions, Prog. Part. Nucl. Phys. 121, 103911 (2021). doi: 10.1016/j.ppnp.2021.103911http://doi.org/10.1016/j.ppnp.2021.103911
C.W. Ma, H.L. Wei, X.X. Chen et al., Precise machine learning models for fragment production in projectile fragmentation reactions using Bayesian neural networks, Chin. Phys. C 46(7), 074104 (2022). doi: 10.1088/1674-1137/ac5efbhttp://doi.org/10.1088/1674-1137/ac5efb
B. Schlitt, Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg, 1997.
F.G. Kondev, M. Wang, W.J. Huang et al., The NUBASE2020 evaluation of nuclear physics properties. Chinese Phys. C 45(3), 030001 (2021). doi: 10.1088/1674-1137/abddaehttp://doi.org/10.1088/1674-1137/abddae
Q. Wang, baseline estimation program, Github (2021). https://github.com/NanaVan/baseline-estimatehttps://github.com/NanaVan/baseline-estimatehttps://github.com/NanaVan/baseline-estimatehttps://github.com/NanaVan/baseline-estimate Accessed 8 Nov 2021
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution