1.Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
2.Spallation Neutron Source Science Center, Dongguan 523803, China
3.School of Nuclear Science and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
4.Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China
5.School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
† baibo@ihep.ac.cn
‡ tongxin@ihep.ac.cn
Scan for full text
Yu-Chen Dong, Tian-Hao Wang, Wolfgang Kreuzpaintner, et al. Miniaturized time-of-flight neutron spin flipper using a high-TC superconductor. [J]. Nuclear Science and Techniques 33(11):145(2022)
Yu-Chen Dong, Tian-Hao Wang, Wolfgang Kreuzpaintner, et al. Miniaturized time-of-flight neutron spin flipper using a high-TC superconductor. [J]. Nuclear Science and Techniques 33(11):145(2022) DOI: 10.1007/s41365-022-01134-7.
A miniaturized neutron spin flipper based on a high-T,C, superconductor film, developed at the China Spallation Neutron Source (CSNS), is presented. A neutron spin flipper is an essential component for performing polarized neutron experiments and, as such, constitutes a high priority for developing CSNS’s polarized neutron capability. To provide the beamlines with a universal neutron spin flipper operating over a wide wavelength band, the neutron spin flipper utilizes non-adiabatic spin flipping during transit through opposite magnetic fields that are mutually shielded by the superconductor Meissner effect. A compact vacuum heat shield and a low-power consumption sterling refrigerator maintained the superconducting condition while reducing the size and power input of the flipper. The prototype device was tested at the CSNS BL-20, which demonstrated a flipping efficiency of 99 % at 4 Å.
NeutronSuperconductorScatteringSpin-flipper
A. Wiedenmann, Small-angle neutron scattering investigations of magnetic nanostructures using polarized neutrons. J. Appl. Crystallogr. 33, 428-432 (2000). doi: 10.1107/S0021889899015381http://doi.org/10.1107/S0021889899015381
S. Koizumi, H. Iwase, J. Suzuki et al. Focusing and polarized neutron small-angle scattering spectrometer (SANS-J-II). The challenge of observation over length scales from ångström to a micrometer J Appl Cryst, 40,s474–s479 (2007). doi: 10.1107/S0021889807014392http://doi.org/10.1107/S0021889807014392
G.P. Felcher, R.O. Hilleke, R.K. Crawford et al., Polarized neutron reflectometer: a new instrument to measure magnetic depth profiles. Rev. Sci. Instrum. 58, 609-619 (1987). doi: 10.1063/1.1139225http://doi.org/10.1063/1.1139225
J.F. Ankner, G.P. Felcher, Polarized neutron reflectometry. J. Magn. Magn. Mater. 200, 741-754 (1999). doi: 10.1016/S0304-8853(99)00392-3http://doi.org/10.1016/S0304-8853(99)00392-3
A. Zheludev, V. Barone, M. Bonnet et al., Spin density in a nitronyl Nitroxide Free Radical. Polarized neutron diffraction investigation and ab initio calculations. J. Am. Chem. Soc. 116, 2019–2027 (1994). doi: 10.1021/ja00084a048http://doi.org/10.1021/ja00084a048
J. Akimitsu, H. Ichikawa, N. Eguchi et al., TDirect observation of orbital ordering in YTiO 3 by means of the polarized neutron diffraction technique . J. Phys. Soc. Jpn. 70, 3475-3478 (2001). doi: 10.1143/JPSJ.70.3475http://doi.org/10.1143/JPSJ.70.3475
M. Strobl, N. Kardjilov, A. Hilger et al., Imaging with polarized neutrons. Phys. B Condensed Matter 404, 2611-2614 (2009). https://www.sciencedirect.com/science/article/pii/S0921452609003871https://www.sciencedirect.com/science/article/pii/S0921452609003871doi: 10.1016/j.physb.2009.06.032http://doi.org/10.1016/j.physb.2009.06.032
NN. Kardjilov, I. Manke, A. Hilger et al., Neutron imaging in materials science. Materials Today 14, 248-256 (2011). https://www.sciencedirect.com/science/article/pii/S0168900209002150https://www.sciencedirect.com/science/article/pii/S0168900209002150doi: 10.1016/j.nima.2009.01.162http://doi.org/10.1016/j.nima.2009.01.162
F. Mezei, Neutron spin echo: A New concept in polarized thermal neutron techniques. Z. Physik 255, 146-160 (2013). doi: 10.1007/BF01394523http://doi.org/10.1007/BF01394523
R. Golub and R. Gähler, A neutron resonance spin echo spectrometer for quasi-elastic and inelastic scattering. Phys. Lett. A 123, 43–48 (1987). https://linkinghub.elsevier.com/retrieve/pii/0375960187907602https://linkinghub.elsevier.com/retrieve/pii/0375960187907602doi: 10.1016/0375-9601(87)90760-2http://doi.org/10.1016/0375-9601(87)90760-2
A.N. Bazhenov, V.M. Lobashev, A.N. Pirozhkov et al., An adiabatic resonance spin-flipper for thermal and cold neutrons. Nucl. Instrum. Meth. A 332, 534-536 (1993). doi: 10.1016/0168-9002(93)90311-5http://doi.org/10.1016/0168-9002(93)90311-5
G.M. Drabkin, E.I. Zabidarov, Y.A. Kasman et al., Investigation of a phase transition in nickel with polarized neutrons. Soviet J. Experimental and Theoretical Physics 29, 261 (1969).
K. Abrahams, O. Steinsvoll, P.J.M. Bongaarts, et al., Reversal of the spin of polarized thermal neutrons without depolarization. Rev. Sci. Instrum. 33, 524-525 (1962). doi: 10.1063/1.1717907http://doi.org/10.1063/1.1717907
T. Xin, Polarized neutron techniques. Physics 49, 765–773 (2020). http://www.wuli.ac.cn/CN/abstract/article_76257.shtmlhttp://www.wuli.ac.cn/CN/abstract/article_76257.shtmldoi: 10.7693/wl20201105http://doi.org/10.7693/wl20201105 (in Chinese)
F. Tasset, Zero-field neutron polarimetry. Physica B Condensed Matter 156-157, 627–630 (1989). https://www.sciencedirect.com/science/article/pii/0921452689907497https://www.sciencedirect.com/science/article/pii/0921452689907497doi: 10.1016/0921-4526(89)90749-7http://doi.org/10.1016/0921-4526(89)90749-7
M.R. Fitzsimmons, M. Lütt, H. Kinder et al., YBCO films as Meissner screens in the control of polarized neutron beams — observations and calculations. Nucl. Instrum. Meth. A 411, 401-416 (1998). https://www.sciencedirect.com/science/article/pii/S0168900298000084https://www.sciencedirect.com/science/article/pii/S0168900298000084doi: 10.1016/S0168-9002(98)00008-4http://doi.org/10.1016/S0168-9002(98)00008-4
S.R. Parnell, H. Kaiser, A.L. Washington et al., Design of a cryogen-free cryo-flipper using a high-tc ybco film. Physics Proceedings 42, 125-129 (2013). doi: 10.1016/j.phpro.2013.03.185http://doi.org/10.1016/j.phpro.2013.03.185
S. Parnell, A. Washington, H. Kaiser et al., Performance of a polarized neutron cryo-flipper using a high TcYBCO film. Nucl. Instrum. Meth. A 722, 20-23 (2013). https://linkinghub.elsevier.com/retrieve/pii/S0168900213004622https://linkinghub.elsevier.com/retrieve/pii/S0168900213004622doi: 10.1016/j.nima.2013.04.041http://doi.org/10.1016/j.nima.2013.04.041
H. Chen, X.-L. Wang, China’s first pulsed neutron source. Nat. Mater. 15, 689-691 (2016). https://www.nature.com/articles/nmat4655https://www.nature.com/articles/nmat4655doi: 10.1038/nmat4655http://doi.org/10.1038/nmat4655
J.-Y. Tang, Q. An, J.-B. Bai et al.. Back-n white neutron source at CSNS and its applications. Nucl. Sci. Tech., 32, 11 (2021). doi: 10.1007/s41365-021-00846-6http://doi.org/10.1007/s41365-021-00846-6
X.-F. Jiang, J.-R. Zhou, H. Luo et al., A large-area 3He tube array detector with vacuum operation capacity for the SANS instrument at CSNS. Nucl. Sci. Tech. 33, 89 (2022). doi: 10.1007/s41365-022-01067-1http://doi.org/10.1007/s41365-022-01067-1
Z. Chen, Y. Li, R. Zhu et al., High-temperature superconducting YBa2 Cu 3 O 7 - δ Josephson Junction Fabricated with a Focused Helium Ion Beam. Chin. Phys. Lett. 39, 077402 (2022). doi: 10.1088/0256-307X/39/7/077402http://doi.org/10.1088/0256-307X/39/7/077402
COMSOL AB, COMSOL Multiphysics ∘ledR v.6.0 cn.comsol.com. Stockholm, Sweden.
J. Zhang, C. Huang, Z. Qin et al., In situ optical pumping for polarizing 3He neutron spin filters at China Spallation Neutron Source. Sci. China Phys. Mech., 65, 4 (2022). doi: 10.1007/s11433-021-1876-0http://doi.org/10.1007/s11433-021-1876-0
P. J. Brown and J. B. Forsyth, Determination of beam polarization and flipping efficiency in polarized neutron diffractometry. Brit. J. Appl. Phys. 15, 1529-1533 (1964). doi: 10.1088/0508-3443/15/12/313http://doi.org/10.1088/0508-3443/15/12/313
H. G. Priesmeyer, in Transmission Bragg-Edge Measurements, NATO ASI Series, ed. by M. T. Hutchings and A. D. Krawitz (Springer Netherlands, Dordrecht, 1992) pp. 709-745
K. Iwase, T. Nagata, K. Sakuma et al., Texture analysis using the Bragg-edge neutron transmission method. in 2007 IEEE Nuclear Science Symposium Conference Record (Honolulu, USA, 26 Oct. - 3 Nov. 2007)
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution