1.Zhangjiang Laboratory, Shanghai 201210, China
2.School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi, China
3.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
4.University of Chinese Academy of Sciences, Beijing 100049, China
5.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
6.European XFEL, 22869 Schenefeld, Germany
7.ShanghaiTech University, Shanghai 201210, China
† denghx@sari.ac.cn
Scan for full text
Nan-Shun Huang, Zi-Peng Liu, Bang-Jie Deng, et al. The MING proposal at SHINE: Megahertz cavity enhanced X-ray generation. [J]. Nuclear Science and Techniques 34(1):6(2023)
Nan-Shun Huang, Zi-Peng Liu, Bang-Jie Deng, et al. The MING proposal at SHINE: Megahertz cavity enhanced X-ray generation. [J]. Nuclear Science and Techniques 34(1):6(2023) DOI: 10.1007/s41365-022-01151-6.
The cavity-based X-ray free-electron laser (XFEL) has promise in producing fully coherent pulses with a bandwidth of a few meV and very stable intensity, whereas the currently existing self-amplified spontaneous emission (SASE) XFEL is capable of generating ultra-short pulses with chaotic spectra. In general, a cavity-based XFEL can provide a spectral brightness three orders of magnitude higher than that of the SASE mode, thereby opening a new door for cutting-edge scientific research. With the development of superconducting MHz repetition-rate XFEL facilities such as FLASH, European-XFEL, LCLS-II, and SHINE, practical cavity-based XFEL operations are becoming increasingly achievable. In this study, Megahertz cavIty eNhanced x-ray Generation (MING) is proposed based on China’s first hard XFEL facility — SHINE, which we refer to as MING@SHINE.
X-ray free-electron laserFree electron laser oscillatorFully coherent X-ray
W. Ackermann, G. Asova, V. Ayvazyan et al., Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics, 1, 336-342 (2007). doi: 10.1038/nphoton.2007.76http://doi.org/10.1038/nphoton.2007.76
P. Emma, R. Akre, J. Arthur et al., First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics, 4, 641-647 (2010). doi: 10.1038/nphoton.2010.176http://doi.org/10.1038/nphoton.2010.176
T. Ishikawa, H. Aoyagi, T. Asaka et al., A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics, 6, 540-544 (2012). doi: 10.1038/nphoton.2012.141http://doi.org/10.1038/nphoton.2012.141
H.-S. Kang, C.-K. Min, H. Heo et al., Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics, 11, 708-713 (2017). doi: 10.1038/s41566-017-0029-8http://doi.org/10.1038/s41566-017-0029-8
E. Allaria, R. Appio, L. Badano et al., Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics, 6, 699-704 (2012). doi: 10.1038/nphoton.2012.233http://doi.org/10.1038/nphoton.2012.233
Z. Zhao, D. Wang, Q. Gu et al., SXFEL: A soft X-ray free electron laser in China. Synchrotron Radiation News, 30, 29-33 (2017). doi: 10.1080/08940886.2017.1386997http://doi.org/10.1080/08940886.2017.1386997
E. Prat, R. Abela, M. Aiba et al., A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nat. Photonics, 14, 748-754 (2020). doi: 10.1038/s41566-020-00712-8http://doi.org/10.1038/s41566-020-00712-8
N. Huang, H. Deng, B. Liu et al., Features and futures of X-ray free-electron lasers. The Innovation, 2, 100097 (2021). doi: 10.1016/j.xinn.2021.100097http://doi.org/10.1016/j.xinn.2021.100097
Z. Zhao, D. Wang, Z. Yang et al., SCLF: An 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai. Proc. of International Free Electron Laser Conference (FEL’17), number 38 in International Free Electron Laser Conference, pp. 182–184. JACoW, Geneva, Switzerland (2018). doi: 10.18429/JACoW-FEL2017-MOP055http://doi.org/10.18429/JACoW-FEL2017-MOP055
A. M. Kondratenko, E. L. Saldin, Generating of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel., 10, 207-216 (1980)
R. Bonifacio, C. Pellegrini, L. Narducci, Collective instabilities and high-gain regime in a free electron laser. Opt. Commun., 50, 373-378 (1984). doi: 10.1016/0030-4018(84)90105-6http://doi.org/10.1016/0030-4018(84)90105-6
E. Saldin, E. Schneidmiller, Y. Shvyd’ko et al., X-ray fel with a mev bandwidth. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 475, 357-362 (2001). doi: 10.1016/S0168-9002(01)01539-Xhttp://doi.org/10.1016/S0168-9002(01)01539-X. FEL2000: Proc. 22nd Int. Free Electron Laser Conference and 7th F EL Users Workshop
G. Geloni, V. Kocharyan, E. Saldin, A novel self-seeding scheme for hard X-ray FELs. J. Mod. Opt., 58, 1391-1403 (2011). doi: 10.1080/09500340.2011.586473http://doi.org/10.1080/09500340.2011.586473
I. Inoue, T. Osaka, T. Hara et al., Generation of narrow-band X-ray free-electron laser via reflection self-seeding. Nat. Photonics, 13, 319-322 (2019). doi: 10.1038/s41566-019-0365-yhttp://doi.org/10.1038/s41566-019-0365-y
I. Nam, C.-K. Min, B. Oh et al., High-brightness self-seeded x-ray free-electron laser covering the 3.5keV to 14.6keV range. Nature Photonics, 15, 435-441 (2021). doi: 10.1038/s41566-021-00777-zhttp://doi.org/10.1038/s41566-021-00777-z
J. Amann, W. Berg, V. Blank et al., Demonstration of self-seeding in a hard-x-ray free-electron laser. Nature Photonics, 6, 693-698 (2012). doi: 10.1038/nphoton.2012.180http://doi.org/10.1038/nphoton.2012.180
K. J. Kim, Y. Shvyd’ko, S. Reiche, A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac. Phys. Rev. Lett., 100 (2008). doi: 10.1103/PhysRevLett.100.244802http://doi.org/10.1103/PhysRevLett.100.244802
R. R. Lindberg, K.-J. Kim, Y. Shvyd’ko et al., Performance of the x-ray free-electron laser oscillator with crystal cavity. Phys. Rev. ST Accel. Beams, 14, 010701 (2011). doi: 10.1103/PhysRevSTAB.14.010701http://doi.org/10.1103/PhysRevSTAB.14.010701
Y. V. Shvyd’ko, S. Stoupin, A. Cunsolo et al., High-reflectivity high-resolution X-ray crystal optics with diamonds. Nat. Phys., 6, 196-199 (2010). doi: 10.1038/nphys1506http://doi.org/10.1038/nphys1506
S. Stoupin, A. M. March, H. Wen et al., Direct observation of dynamics of thermal expansion using pump-probe high-energy-resolution x-ray diffraction. Phys. Rev. B, 86, 054301 (2012). doi: 10.1103/PhysRevB.86.054301http://doi.org/10.1103/PhysRevB.86.054301
T. Kolodziej, P. Vodnala, S. Terentyev et al., Diamond drumhead crystals for X-ray optics applications. Journal of Applied Crystallography, 49, 1240-1244 (2016). doi: 10.1107/S1600576716009171http://doi.org/10.1107/S1600576716009171
B. McNeil. A simple model of the free electron laser oscillator from low into high gain. IEEE Journal of Quantum Electronics, 26, 1124-1129 (1990). doi: 10.1109/3.108109http://doi.org/10.1109/3.108109
D. C. Nguyen, R. L. Sheffield, C. M. Fortgang et al., First lasing of the regenerative amplifier fel. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 429, 125-130 (1999). doi: 10.1016/S0168-9002(99)00090-Xhttp://doi.org/10.1016/S0168-9002(99)00090-X
Z. Huang, R. D. Ruth. Fully Coherent X-ray pulses from a regenerative-amplifier free-electron laser. Phys. Rev. Lett., 96, 144801 (2006). doi: 10.1103/PhysRevLett.96.144801http://doi.org/10.1103/PhysRevLett.96.144801
H. P. Freund, P. J. M. van der Slot, Y. Shvyd’ko, An x-ray regenerative amplifier free-electron laser using diamond pinhole mirrors. New Journal of Physics, 21, 093028 (2019). doi: 10.1088/1367-2630/ab3f72http://doi.org/10.1088/1367-2630/ab3f72
G. Marcus, A. Halavanau, Z. Huang et al., Refractive guide switching a regenerative amplifier free-electron laser for high peak and average power hard x rays. Phys. Rev. Lett., 125, 254801 (2020). doi: 10.1103/PhysRevLett.125.254801http://doi.org/10.1103/PhysRevLett.125.254801
T. Raubenheimer. The LCLS-II-HE, A High Energy Upgrade of the LCLS-II. Proc. 60th ICFA Advanced Beam Dynamics Workshop (FLS’18), number 60 in ICFA Advanced Beam Dynamics Workshop, pp. 6–11. JACoW Publishing, Geneva, Switzerland (2018). doi: 10.18429/JACoW-FLS2018-MOP1WA02http://doi.org/10.18429/JACoW-FLS2018-MOP1WA02
B. Adams, G. Aeppli, T. Allison et al., Scientific Opportunities with an X-ray Free-Electron Laser Oscillator (2019)
Z. T. Zhao. Storage ring light sources. Rev. Accl. Sci. Tech., 03, 57-76 (2010). doi: 10.1142/S1793626810000361http://doi.org/10.1142/S1793626810000361
J. M. J. Madey, Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field. J. Appl. Phys., 42, 1906-1913 (1971). doi: 10.1063/1.1660466http://doi.org/10.1063/1.1660466
H. Haus. Noise in free-electron laser amplifier. IEEE J. Quantum Electron., 17, 1427-1435 (1981). doi: 10.1109/JQE.1981.1071289http://doi.org/10.1109/JQE.1981.1071289
Y. Derbenev, A. Kondratenko, E. Saldin, On the possibility of using a free electron laser for polarization of electrons in storage rings. Nuclear Instruments and Methods in Physics Research, 193, 415-421 (1982). doi: 10.1016/0029-554X(82)90233-6http://doi.org/10.1016/0029-554X(82)90233-6
L. H. Yu, Generation of intense uv radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A, 44, 5178-5193 (1991). doi: 10.1103/PhysRevA.44.5178http://doi.org/10.1103/PhysRevA.44.5178
J. Feldhaus, E. Saldin, J. Schneider et al., Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL. Opt. Commun., 140, 341-352 (1997). doi: 10.1016/S0030-4018(97)00163-6http://doi.org/10.1016/S0030-4018(97)00163-6
G. Stupakov, Using the beam-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett., 102, 074801 (2009). doi: 10.1103/PhysRevLett.102.074801http://doi.org/10.1103/PhysRevLett.102.074801
S.-Q. Shen, D.-Z. Huang, Z.-T. Zhao et al., A compact electron storage ring for lithographical applications. Nuclear Science and Techniques, 32, 91 (2021). doi: 10.1007/s41365-021-00924-9http://doi.org/10.1007/s41365-021-00924-9
A. Halavanau, A. Benediktovitch, A. A. Lutman et al., Population inversion X-ray laser oscillator. Proc. Natl. Acad. Sci. U.S.A., 117, 15511-15516 (2020). doi: 10.1073/pnas.2005360117http://doi.org/10.1073/pnas.2005360117
A. Q. R. Baron, Introduction to High-Resolution Inelastic X-Ray Scattering. arXiv:1504.01098[cond-mat] (2020). ArXiv: 1504.01098
Y. Nakajima, S. Imada, K. Hirose et al., Carbon-depleted outer core revealed by sound velocity measurements of liquid iron–carbon alloy. Nature Communications, 6, 8942 (2015). doi: 10.1038/ncomms9942http://doi.org/10.1038/ncomms9942
O. Chubar, G. Geloni, V. Kocharyan et al., Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers. Journal of Synchrotron Radiation, 23, 410-424 (2016). doi: 10.1107/S1600577515024844http://doi.org/10.1107/S1600577515024844
K.-J. Kim, Y. V. Shvyd’ko, Tunable optical cavity for an x-ray free-electron-laser oscillator. Phys. Rev. ST Accel. Beams, 12, 030703 (2009). doi: 10.1103/PhysRevSTAB.12.030703http://doi.org/10.1103/PhysRevSTAB.12.030703
T. P. Devereaux, A. M. Shvaika, K. Wu et al., Directly characterizing the relative strength and momentum dependence of electron-phonon coupling using resonant inelastic x-ray scattering. Phys. Rev. X, 6, 041019 (2016). doi: 10.1103/PhysRevX.6.041019http://doi.org/10.1103/PhysRevX.6.041019
L. J. P. Ament, M. van Veenendaal, T. P. Devereaux et al., Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys., 83, 705-767 (2011). doi: 10.1103/RevModPhys.83.705http://doi.org/10.1103/RevModPhys.83.705
J. Kim, D. Casa, M. H. Upton et al., Magnetic excitation spectra of sr2iro4 probed by resonant inelastic x-ray scattering: Establishing links to cuprate superconductors. Phys. Rev. Lett., 108, 177003 (2012). doi: 10.1103/PhysRevLett.108.177003http://doi.org/10.1103/PhysRevLett.108.177003
T. Heinzl, B. Liesfeld, K.-U. Amthor et al., On the observation of vacuum birefringence. Opt. Commun., 267, 318-321 (2006). doi: 10.1016/j.optcom.2006.06.053http://doi.org/10.1016/j.optcom.2006.06.053
H. Bernhardt, A. T. Schmitt, B. Grabiger et al., Ultra-high precision x-ray polarimetry with artificial diamond channel cuts at the beam divergence limit. Phys. Rev. Research, 2, 023365 (2020). doi: 10.1103/PhysRevResearch.2.023365http://doi.org/10.1103/PhysRevResearch.2.023365
B. Shen, Z. Bu, J. Xu et al., Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam. Plasma Phys. Control. Fusion, 60, 044002 (2018). doi: 10.1088/1361-6587/aaa7fbhttp://doi.org/10.1088/1361-6587/aaa7fb
L. Allen, M. W. Beijersbergen, R. J. Spreeuw et al., Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189 (1992). doi: 10.1103/PhysRevA.45.8185http://doi.org/10.1103/PhysRevA.45.8185
Y. Shen, X. Wang, Z. Xie et al., Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8 (2019). doi: 10.1038/s41377-019-0194-2http://doi.org/10.1038/s41377-019-0194-2
A. Sakdinawat, Y. Liu, Soft-x-ray microscopy using spiral zone plates. Opt. Lett., 32, 2635 (2007). doi: 10.1364/ol.32.002635http://doi.org/10.1364/ol.32.002635
M. Van Veenendaal, I. McNulty. Prediction of strong dichroism induced by X rays carrying orbital momentum. Phys. Rev. Lett., 98 (2007). doi: 10.1103/PhysRevLett.98.157401http://doi.org/10.1103/PhysRevLett.98.157401
E. Hemsing, A. Gover, J. Rosenzweig, Virtual dielectric waveguide mode description of a high-gain free-electron laser. II. Modeling and numerical simulations. Phys. Rev. A - At. Mol. Opt. Phys., 77, 63831 (2008). doi: 10.1103/PhysRevA.77.063831http://doi.org/10.1103/PhysRevA.77.063831
E. Hemsing, P. Musumeci, S. Reiche et al., Helical electron-beam microbunching by harmonic coupling in a helical undulator. Phys. Rev. Lett., 102, 174801 (2009). doi: 10.1103/PhysRevLett.102.174801http://doi.org/10.1103/PhysRevLett.102.174801
E. Hemsing, A. Marinelli, J. B. Rosenzweig, Generating optical orbital angular momentum in a high-gain free-electron laser at the first harmonic. Phys. Rev. Lett., 106, 164803 (2011). doi: 10.1103/PhysRevLett.106.164803http://doi.org/10.1103/PhysRevLett.106.164803
H.P. Geng, J.H. Chen, Z.T. Zhao, Scheme for generating 1 nm X-ray beams carrying orbital angular momentum at the SXFEL. Nucl. Sci. Tech. 31, 88 (2020). doi: 10.1007/s41365-020-00794-7http://doi.org/10.1007/s41365-020-00794-7
N. Huang, H. Deng, Generating X-rays with orbital angular momentum in a free-electron laser oscillator. Optica, 8, 1020 (2021). doi: 10.1364/OPTICA.428341http://doi.org/10.1364/OPTICA.428341
Y.-W. Gong, M. Zhang, W.-J. Fan et al., Beam performance of the SHINE dechirper. Nuclear Science and Techniques, 32, 29 (2021). doi: 10.1007/s41365-021-00860-8http://doi.org/10.1007/s41365-021-00860-8
J.-X. Wang, K. Zhou, P. Li et al., High-brightness photo-injector with standing-wave buncher-based ballistic bunching scheme for inverse Compton scattering light source. Nuclear Science and Techniques, 33, 44 (2022). doi: 10.1007/s41365-022-01025-xhttp://doi.org/10.1007/s41365-022-01025-x
Z.-Y. Ma, S.-J. Zhao, X.-M. Liu et al., High RF power tests of the first 1.3 GHz fundamental power coupler prototypes for the SHINE project. Nuclear Science and Techniques, 33, 10 (2022). doi: 10.1007/s41365-022-00984-5http://doi.org/10.1007/s41365-022-00984-5
C. Wang, Z.H. Zhu, Z.G. Jiang et al., Design of a 162.5 MHz continuous-wave normal-conducting radiofrequency electron gun. Nucl. Sci. Tech. 31, 110 (2020). doi: 10.1007/s41365-020-00817-3http://doi.org/10.1007/s41365-020-00817-3
H. Chen, L.M. Zheng, B. Gao et al., Beam dynamics optimization of very-high-frequency gun photoinjector. Nucl. Sci. Tech. 33, 116 (2022). doi: 10.1007/s41365-022-01105-yhttp://doi.org/10.1007/s41365-022-01105-y
D. A. G. Deacon, L. R. Elias, J. M. J. Madey et al., First Operation of a Free-Electron Laser. Phys. Rev. Lett., 38, 892-894 (1977). doi: 10.1103/PhysRevLett.38.892http://doi.org/10.1103/PhysRevLett.38.892
Z. Huang, K.-J. Kim, Review of x-ray free-electron laser theory. Phys. Rev. Accel. Beams, 10, 034801 (2007). doi: 10.1103/PhysRevSTAB.10.034801http://doi.org/10.1103/PhysRevSTAB.10.034801
K. -J. Kim, Z. Huang, R. Lindberg, Synchrotron Radiation and Free-Electron Lasers: Principles of Coherent X-Ray Generation. Cambridge University Press, Cambridge (2017). doi: 10.1017/9781316677377http://doi.org/10.1017/9781316677377
Y. Shvydko, S. Stoupin, V. Blank et al., Near-100% bragg reflectivity of x-rays. Nature Photonics, 5, 539-542 (2011). doi: 10.1038/nphoton.2011.197http://doi.org/10.1038/nphoton.2011.197
Y. Shvyd’ko, R. Lindberg, Spatiotemporal response of crystals in x-ray Bragg diffraction. Phys. Rev. Accel. Beams, 15, 100702 (2012). doi: 10.1103/PhysRevSTAB.15.100702http://doi.org/10.1103/PhysRevSTAB.15.100702
K.-J. Kim, Y. Shvyd’ko, S. Reiche, A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac. Phys. Rev. Lett., 100, 244802 (2008). doi: 10.1103/PhysRevLett.100.244802http://doi.org/10.1103/PhysRevLett.100.244802
A. Snigirev, V. Kohn, I. Snigireva et al., A compound refractive lens for focusing high-energy X-rays. Nature, 384, 49-51 (1996). doi: 10.1038/384049a0http://doi.org/10.1038/384049a0. Bandiera_abtest: a Cg_type: Nature Research Journals Number: 6604 Primary_atype: Research Publisher: Nature Publishing Group
T. Kolodziej, S. Stoupin, W. Grizolli et al., Efficiency and coherence preservation studies of Be refractive lenses for XFELO application. Journal of Synchrotron Radiation, 25, 354-360 (2018). doi: 10.1107/S160057751701699Xhttp://doi.org/10.1107/S160057751701699X. Number: 2 Publisher: International Union of Crystallography
P. A. Bélanger. Beam propagation and the abcd ray matrices. Opt. Lett., 16, 196-198 (1991). doi: 10.1364/OL.16.000196http://doi.org/10.1364/OL.16.000196
Y. V. Shvyd’ko, M. Lerche, H.-C. Wille et al., X-ray interferometry with microelectronvolt resolution. Physical Review Letters, 90 (2003). doi: 10.1103/physrevlett.90.013904http://doi.org/10.1103/physrevlett.90.013904
Y. Shvyd’ko, X-Ray Optics, volume 98 of Springer Series in Optical Sciences. Springer Berlin Heidelberg, Berlin, Heidelberg (2004). doi: 10.1007/978-3-540-40890-1http://doi.org/10.1007/978-3-540-40890-1
P. Pradhan, M. Wojcik, X. Huang et al., Small bragg-plane slope errors revealed in synthetic diamond crystals. Journal of Synchrotron Radiation, 27, 1553-1563 (2020). doi: 10.1107/s1600577520012746http://doi.org/10.1107/s1600577520012746
Y. Shvyd’ko, Output coupling from x-ray free-electron laser cavities with intracavity beam splitters. Phys. Rev. Accel. Beams, 22, 100703 (2019). doi: 10.1103/PhysRevAccelBeams.22.100703http://doi.org/10.1103/PhysRevAccelBeams.22.100703
S. Reiche, GENESIS 1.3: a fully 3D time-dependent FEL simulation code. Nucl. Instrum. Methods Phys. Res. A, 429, 243-248 (1999). doi: 10.1016/S0168-9002(99)00114-Xhttp://doi.org/10.1016/S0168-9002(99)00114-X
J. G. Karssenberg, P. J. M. van der Slot, I. V. Volokhine et al., Modeling paraxial wave propagation in free-electron laser oscillators. J. Appl. Phys., 100, 093106 (2006). doi: 10.1063/1.2363253http://doi.org/10.1063/1.2363253
N.-S. Huang, K. Li, H.-X. Deng, BRIGHT: the three-dimensional X-ray crystal Bragg diffraction code. Nucl. Sci. Tech., 30, 39 (2019). doi: 10.1007/s41365-019-0559-5http://doi.org/10.1007/s41365-019-0559-5
D. Jaroszynski, R. Bakker, D. Oepts et al., Limit cycle behaviour in FELIX. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 331, 52-58 (1993). doi: 10.1016/0168-9002(93)90012-7http://doi.org/10.1016/0168-9002(93)90012-7
H. P. Freund, D. C. Nguyen, P. A. Sprangle et al., Three-dimensional, time-dependent simulation of a regenerative amplifier free-electron laser. Physical Review Special Topics - Accelerators and Beams, 16 (2013). doi: 10.1103/physrevstab.16.010707http://doi.org/10.1103/physrevstab.16.010707
M. Borland, Elegant: A flexible sdds-compliant code for accelerator simulation (2000). doi: 10.2172/761286http://doi.org/10.2172/761286
S. Stoupin, F. Lenkszus, R. Laird et al., Nanoradian angular stabilization of x-ray optical components. Review of Scientific Instruments, 81, 055108 (2010). doi: 10.1063/1.3428722http://doi.org/10.1063/1.3428722
Radia. https://www.esrf.fr/Accelerators/Groups/InsertionDevices/Software/Radiahttps://www.esrf.fr/Accelerators/Groups/InsertionDevices/Software/Radia, last Modified: Mon, 09 Jan 2017 08:46:42 GMT
A. Snigirev, V. Kohn, I. Snigireva et al., A compound refractive lens for focusing high-energy x-rays. Nature, 384, 49-51 (1996). doi: 10.1038/384049a0http://doi.org/10.1038/384049a0
B. Lengeler, C. Schroer, J. Tümmler et al., Imaging by parabolic refractive lenses in the hard x-ray range. Journal of Synchrotron Radiation, 6, 1153-1167 (1999). doi: 10.1107/s0909049599009747http://doi.org/10.1107/s0909049599009747
S. Nida, A. Tsibizov, T. Ziemann et al., Silicon carbide X-ray beam position monitors for synchrotron applications. Journal of Synchrotron Radiation, 26, 28-35 (2019). doi: 10.1107/S1600577518014248http://doi.org/10.1107/S1600577518014248
J. Morse, B. Solar, H. Graafsma, Diamond X-ray beam-position monitoring using signal readout at the synchrotron radiofrequency. Journal of Synchrotron Radiation, 17, 456-464 (2010). doi: 10.1107/S0909049510016547http://doi.org/10.1107/S0909049510016547
N. Samadi, B. Bassey, M. Martinson et al., A phase-space beam position monitor for synchrotron radiation. Journal of Synchrotron Radiation, 22, 946-955 (2015). doi: 10.1107/S1600577515007390http://doi.org/10.1107/S1600577515007390
J. Chen, Y.B. Leng, L.Y. Yu et al., Optimization of the cavity beam-position monitor system for the Shanghai soft X-ray free-electron laser user facility. Nucl. Sci. Tech. 33, 124 (2022). doi: 10.1007/s41365-022-01117-8http://doi.org/10.1007/s41365-022-01117-8
J.D. Fan, Y.J. Tong, Y.G. Nie et al., First commissioning results of the coherent scattering and imaging endstation at the Shanghai soft X-ray free-electron laser facility. Nucl. Sci. Tech. 33, 114 (2022). doi: 10.1007/s41365-022-01103-0http://doi.org/10.1007/s41365-022-01103-0
B. C. Platt, R. Shack, History and principles of shack-hartmann wavefront sensing. Journal of Refractive Surgery, 17 (2001). doi: 10.3928/1081-597X-20010901-13http://doi.org/10.3928/1081-597X-20010901-13
D. R. Neal, J. Copland, D. A. Neal, Shack-Hartmann wavefront sensor precision and accuracy. Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, 4779, 148 (2002). doi: 10.1117/12.450850http://doi.org/10.1117/12.450850
T. Weitkamp, B. Nöhammer, A. Diaz et al., X-ray wavefront analysis and optics characterization with a grating interferometer. Applied Physics Letters, 86, 1-3 (2005). doi: 10.1063/1.1857066http://doi.org/10.1063/1.1857066
B. Keitel, E. Plönjes, S. Kreis et al., Hartmann wavefront sensors and their application at FLASH. Journal of Synchrotron Radiation, 23, 43-49 (2016). doi: 10.1107/S1600577515020354http://doi.org/10.1107/S1600577515020354
Y. Liu, M. Seaberg, D. Zhu et al., High-accuracy wavefront sensing for X-ray free electron lasers. Optica, 5, 967 (2018). doi: 10.1364/optica.5.000967http://doi.org/10.1364/optica.5.000967
P. Finetti, E. Allaria, B. Diviacco et al., Polarization measurement of free electron laser pulses in the VUV generated by the variable polarization source FERMI. X-Ray Free-Electron Lasers: Beam Diagnostics, Beamline Instrumentation, and Applications II, 9210, 92100K (2014). doi: 10.1117/12.2062717http://doi.org/10.1117/12.2062717
G. Hartmann, A. O. Lindahl, A. Knie et al., Review of Scientific Instruments. doi: 10.1063/1.4961470http://doi.org/10.1063/1.4961470
Q. Zhang, B. Deng, Y. Chen et al., Design of a nondestructive two-in-one instrument for measuring the polarization and energy spectrum at an X-ray FEL facility. Journal of Instrumentation, 12, T10003-T10003 (2017). doi: 10.1088/1748-0221/12/10/t10003http://doi.org/10.1088/1748-0221/12/10/t10003
Z. Liu, B. Deng, H. Deng et al., Numerical study of transverse position monitor and compensation for x-ray polarization diagnosis. Review of Scientific Instruments, 92, 113104 (2021). doi: 10.1063/5.0054804http://doi.org/10.1063/5.0054804
Z. Liu, B. Deng, Q. Zhang et al., Design, construction, and offline calibration of ARPolar prototype for SXFEL facility. Radiation Detection Technology and Methods, 6, 214-226 (2022). doi: 10.1007/s41605-022-00329-1http://doi.org/10.1007/s41605-022-00329-1
D. Rich, D. Zhu, J. Turner et al., The LCLS variable-energy hard X-ray single-shot spectrometer. Journal of Synchrotron Radiation, 23, 3-9 (2016). doi: 10.1107/S1600577515022559http://doi.org/10.1107/S1600577515022559
N. Kujala, W. Freund, J. Liu et al., Hard x-ray single-shot spectrometer at the European X-ray Free-Electron Laser. Review of Scientific Instruments, 91 (2020). doi: 10.1063/5.0019935http://doi.org/10.1063/5.0019935
P. Walter, A. Kamalov, A. Gatton et al., Multi-resolution electron spectrometer array for future free-electron laser experiments. Journal of Synchrotron Radiation, 28, 1364-1376 (2021). doi: 10.1107/S1600577521007700http://doi.org/10.1107/S1600577521007700
B. Deng, Z. Liu, H. Yang, Q. Zhang et al., Proposal of a non-invasive spectrum diagnostic instrumentation for hard X-rays with high repetitions (in press). Journal of Instrumentation (2022)
J. Welch, A. Brachmann, F. J. Decker et al., Undulator K-parameter measurements at LCLS. FEL 2009 - 31st International Free Electron Laser Conference, pp. 730–733 (2009)
W. Freund, L. Fröhlich, S. Karabekyan et al., First measurements with the K-monochromator at the European XFEL. Journal of Synchrotron Radiation, 26, 1037-1044 (2019). doi: 10.1107/S1600577519005307http://doi.org/10.1107/S1600577519005307
C. Behrens, F. J. Decker, Y. Ding et al., Few-femtosecond time-resolved measurements of X-ray free-electron lasers. Nature Communications, 5, 1-7 (2014). doi: 10.1038/ncomms4762http://doi.org/10.1038/ncomms4762
P. Finetti, H. Höppner, E. Allaria et al., Pulse duration of seeded free-electron lasers. Physical Review X, 7, 1-19 (2017). doi: 10.1103/PhysRevX.7.021043http://doi.org/10.1103/PhysRevX.7.021043
N. Hartmann, G. Hartmann, R. Heider et al., Attosecond time–energy structure of X-ray free-electron laser pulses. Nature Photonics, 12, 215-220 (2018). doi: 10.1038/s41566-018-0107-6http://doi.org/10.1038/s41566-018-0107-6
B. Erk, J. P. Müller, C. Bomme et al., CAMP@FLASH: an end-station for imaging, electron- and ion-spectroscopy, and pump–probe experiments at the FLASH free-electron laser. Journal of Synchrotron Radiation, 25, 1529-1540 (2018). doi: 10.1107/S1600577518008585http://doi.org/10.1107/S1600577518008585
M. Schneider, C. M. Günther, B. Pfau et al., In situ single-shot diffractive fluence mapping for X-ray free-electron laser pulses. Nature Communications, 9, 1-6 (2018). doi: 10.1038/s41467-017-02567-0http://doi.org/10.1038/s41467-017-02567-0
Y. Kayser, S. Rutishauser, T. Katayama et al., Shot-to-shot diagnostic of the longitudinal photon source position at the SPring-8 Angstrom Compact Free Electron Laser by means of x-ray grating interferometry. Optics Letters, 41, 733 (2016). doi: 10.1364/ol.41.000733http://doi.org/10.1364/ol.41.000733
S. Rutishauser, L. Samoylova, J. Krzywinski et al., Exploring the wavefront of hard X-ray free-electron laser radiation. Nature Communications, 3 (2012). doi: 10.1038/ncomms1950http://doi.org/10.1038/ncomms1950
M. Brambilla, F. Battipede, L. A. Lugiato et al., Transverse laser patterns. I. Phase singularity crystals. Physical Review A, 43, 5090-5113 (1991). doi: 10.1103/PhysRevA.43.5090http://doi.org/10.1103/PhysRevA.43.5090
M. Brambilla, M. Cattaneo, L. A. Lugiato et al., Dynamical transverse laser patterns. I. Theory. Physical Review A, 49, 1427-1451 (1994). doi: 10.1103/PhysRevA.49.1427http://doi.org/10.1103/PhysRevA.49.1427
A.-P. Liu, X. Xiong, X.-F. Ren et al., Detecting orbital angular momentum through division-of-amplitude interference with a circular plasmonic lens. Scientific Reports, 3, 2402 (2013). doi: 10.1038/srep02402http://doi.org/10.1038/srep02402
C. Gao, X. Qi, Y. Liu et al., Sorting and detecting orbital angular momentum states by using a Dove prism embedded Mach–Zehnder interferometer and amplitude gratings. Optics Communications, 284, 48-51 (2011). doi: 10.1016/j.optcom.2010.08.083http://doi.org/10.1016/j.optcom.2010.08.083
J. Leach, M. J. Padgett, S. M. Barnett et al., Measuring the Orbital Angular Momentum of a Single Photon. Physical Review Letters, 88, 257901 (2002). doi: 10.1103/PhysRevLett.88.257901http://doi.org/10.1103/PhysRevLett.88.257901
P. Genevet, J. Lin, M. A. Kats et al., Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nature Communications, 3, 1278 (2012). doi: 10.1038/ncomms2293http://doi.org/10.1038/ncomms2293
T. Lei, M. Zhang, Y. Li et al., Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light: Science & Applications, 4, e257-e257 (2015). doi: 10.1038/lsa.2015.30http://doi.org/10.1038/lsa.2015.30
P. Panthong, S. Srisuphaphon, A. Pattanaporkratana et al., A study of optical vortices with the Talbot effect. Journal of Optics (United Kingdom), 18 (2016). doi: 10.1088/2040-8978/18/3/035602http://doi.org/10.1088/2040-8978/18/3/035602
P. Panthong, S. Srisuphaphon, S. Chiangga et al., High-contrast optical vortex detection using the Talbot effect. Applied Optics, 57, 1657 (2018). doi: 10.1364/ao.57.001657http://doi.org/10.1364/ao.57.001657
S. Buathong, S. Srisuphaphon, S. Deachapunya, Probing vortex beams based on Talbot effect with two overlapping gratings. Journal of Optics (United Kingdom), 24 (2022). doi: 10.1088/2040-8986/ac477chttp://doi.org/10.1088/2040-8986/ac477c
K. Tiedtke, A. Azima, N. Von Bargen et al., The soft x-ray free-electron laser FLASH at DESY: Beamlines, diagnostics and end-stations. New Journal of Physics, 11 (2009). doi: 10.1088/1367-2630/11/2/023029http://doi.org/10.1088/1367-2630/11/2/023029
A. A. Sorokin, Y. Bican, S. Bonfigt et al., An X-ray gas monitor for free-electron lasers. Journal of Synchrotron Radiation, 26, 1092-1100 (2019). doi: 10.1107/S1600577519005174http://doi.org/10.1107/S1600577519005174
K. Tono, T. Kudo, M. Yabashi et al., Single-shot beam-position monitor for x-ray free electron laser. Review of Scientific Instruments, 82 (2011). doi: 10.1063/1.3549133http://doi.org/10.1063/1.3549133
D. Zhu, M. Cammarata, J. M. Feldkamp et al., A single-shot transmissive spectrometer for hard x-ray free electron lasers. Applied Physics Letters, 101 (2012). doi: 10.1063/1.4736725http://doi.org/10.1063/1.4736725
B. Deng, Z. Liu, H. Yang et al., Proposal of a non-invasive spectrum diagnostic instrumentation for hard x-rays with high repetitions. Journal of Instrumentation, 17, P05046 (2022). doi: 10.1088/1748-0221/17/05/p05046http://doi.org/10.1088/1748-0221/17/05/p05046
R. Mitzner, B. Siemer, M. Neeb et al., Spatio-temporal coherence of free electron laser pulses in the soft x-ray regime. Optics Express, 16, 19909 (2008). doi: 10.1364/oe.16.019909http://doi.org/10.1364/oe.16.019909
M. Zangrando, I. Cudin, C. Fava et al., First results from the commissioning of the FERMI@Elettra free electron laser by means of the Photon Analysis Delivery and Reduction System (PADReS). Advances in X-ray Free-Electron Lasers: Radiation Schemes, X-ray Optics, and Instrumentation, 8078, 80780I (2011). doi: 10.1117/12.886459http://doi.org/10.1117/12.886459
Y. Ding, F. J. Decker, P. Emma et al., Femtosecond X-ray pulse characterization in free-electron lasers using a cross-correlation technique. Physical Review Letters, 109, 1-5 (2012). doi: 10.1103/PhysRevLett.109.254802http://doi.org/10.1103/PhysRevLett.109.254802
T. Osaka, I. Inoue, J. Yamada et al., Hard x-ray intensity autocorrelation using direct two-photon absorption. Physical Review Research, 4, 1-7 (2022). doi: 10.1103/physrevresearch.4.l012035http://doi.org/10.1103/physrevresearch.4.l012035
C. Behrens, F.-J. Decker, Y. Ding et al., Few-femtosecond time-resolved measurements of X-ray free-electron lasers. Nat. Commun., 5, 3762 (2014). doi: 10.1038/ncomms4762http://doi.org/10.1038/ncomms4762
R. Ivanov, J. Liu, G. Brenner et al., FLASH free-electron laser single-shot temporal diagnostic: Terahertz-field-driven streaking. Journal of Synchrotron Radiation, 25, 26-31 (2018). doi: 10.1107/S160057751701253Xhttp://doi.org/10.1107/S160057751701253X
D. Dill, A. F. Starace, S. T. Manson, Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions. Physical Review A, 11, 1596-1606 (1975). doi: 10.1103/PhysRevA.11.1596http://doi.org/10.1103/PhysRevA.11.1596
J. Laksman, J. Buck, L. Glaser et al., Commissioning of a photoelectron spectrometer for soft X-ray photon diagnostics at the European XFEL. Journal of Synchrotron Radiation, 26, 1010-1016 (2019). doi: 10.1107/S1600577519003552http://doi.org/10.1107/S1600577519003552
B. Marx, I. Uschmann, S. Höfer et al., Determination of high-purity polarization state of x-rays. Optics Communications, 284, 915-918 (2011). doi: 10.1016/j.optcom.2010.10.054http://doi.org/10.1016/j.optcom.2010.10.054
B. Marx, K. S. Schulze, I. Uschmann et al., High-precision x-ray polarimetry. Physical Review Letters, 110, 254801 (2013). doi: 10.1103/PhysRevLett.110.254801http://doi.org/10.1103/PhysRevLett.110.254801
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution