1.School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
2.Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
† fengs9115@gmail.com
Scan for full text
Da-Jun Zhao, Song Feng, Pin-Jing Cheng, et al. Conceptual design of a Cs2LiLaBr6 scintillator-based neutron total cross section spectrometer on the Back-n beam line at CSNS. [J]. Nuclear Science and Techniques 34(1):3(2023)
Da-Jun Zhao, Song Feng, Pin-Jing Cheng, et al. Conceptual design of a Cs2LiLaBr6 scintillator-based neutron total cross section spectrometer on the Back-n beam line at CSNS. [J]. Nuclear Science and Techniques 34(1):3(2023) DOI: 10.1007/s41365-022-01152-5.
To reduce the experimental uncertainty in the ,235,U resonance energy region and improve the detection efficiency for neutron total cross-section measurements compared with those obtained with the neutron total cross-section spectrometer (NTOX), a dedicated lithium-containing scintillation detector has been developed on the Back-n beam line at the China Spallation Neutron Source (CSNS). The Fast Scintillator-based Neutron Total Cross Section (FAST) spectrometer has been designed based on a Cs,2,LiLaBr,6, (CLLB) scintillator considering the ,γ,-ray flash and neutron environment on the Back-n beam line. The response of the CLLB scintillator to neutrons and ,γ,-rays was evaluated with different ,6,Li/,7,Li abundance ratios using Geant4. The neutron-,γ, discrimination performance of the CLLB has been simulated considering different scintillation parameters, physical designs, and light readout modes. A cubic ,6,Li-enriched (gt;90%) CLLB scintillator, which has a thickness of 4-9 mm and side length of no less than 50 mm to cover the ,Φ,50 mm neutron beam at the spectrometer position, has been proposed coupling to a side-readout SiPM array to construct the FAST spectrometer. The developed simulation techniques for neutron-,γ, discrimination performance could provide technical support for other neutron-induced reaction measurements on the Back-n beam line.
Neutron total cross sectionCLLB scintillatorGeant4Pulse shape discrimination(PSD)
W.P. Abfalterer, F.B. Bateman, F.S. Dietrich et al., Measurement of neutron total cross sections up to 560 MeV. Phys. Rev. C 63 (4), 044608 (2001). doi: 10.1103/PhysRevC.63.044608http://doi.org/10.1103/PhysRevC.63.044608
J. Lee, J. Nishiyama, Jun-Ichi Hori et al., Neutron total cross section measurements of polyethylene using time-of-flight method at KURNS-LINAC. J. Nucl. Sci. Technol. 57 (1), 1-8 (2020). doi: 10.1080/00223131.2019.1647894http://doi.org/10.1080/00223131.2019.1647894
S. Kopecky, P. Riehs, J. A. Harvey et al., New measurement of the charge radius of the neutron. Phys. Rev. Lett. 74(13), 2427 (1995). doi: 10.1103/PhysRevLett.74.2427http://doi.org/10.1103/PhysRevLett.74.2427
Q. An, H.Y. Bai, J. Bao et al., Back-n white neutron facility for nuclear data measurements at CSNS. J. Instrum. 12 (07), P07022 (2017). doi: 10.1088/1748-0221/12/07/P07022http://doi.org/10.1088/1748-0221/12/07/P07022
J.Y. Tang. Q. An, J.B. Bai et al., Back-n white neutron source at CSNS and its applications. Nucl. Sci. Tech. 32, 11 (2021). doi: 10.1007/s41365-021-00846-6http://doi.org/10.1007/s41365-021-00846-6
J. Wen, Y. Yang, Z. Wen et al., A multi-layered fast ionization chamber prototype for fission cross section measurements. J. Instrum. 13 (07), P07020 (2018). doi: 10.1088/1748-0221/13/07/P07020http://doi.org/10.1088/1748-0221/13/07/P07020
Y. Yang, Z. Wen, Z. Han et al., A multi-cell fission chamber for fission cross-section measurements at the back-n white neutron beam of CSNS. Nucl. Instr. Methods A 940, 486-491 (2019). doi: 10.1016/j.nima.2019.06.014http://doi.org/10.1016/j.nima.2019.06.014
X.Y. Liu, Y.W. Yang, R. Liu et al., Measurement of the neutron total cross section of carbon at the back-n white neutron beam of CSNS. Nucl. Sci. Tech. 30 (9), 1-10 (2019). doi: 10.1007/s41365-019-0660-9http://doi.org/10.1007/s41365-019-0660-9
X. Liu, Y. Yang, R. Liu et al., Measurement of the neutron total cross sections of aluminum at the back-n white neutron source of CSNS. Eur. Phys. J. A 57 (7), 1-11 (2021).doi: 10.1140/epja/s10050-021-00513-9http://doi.org/10.1140/epja/s10050-021-00513-9
J.-L. Zhang, B. Jiang, Y.-H. Chen et al., Measurement of total neutron cross section of natural lithium at China Spallation Neutron Source Back-n facility. Acta Phys. Sin. 71 (5), 052901 (2022). doi: 10.7498/aps.71.20211646http://doi.org/10.7498/aps.71.20211646
Z.G. Ge, R.R. Xu, H.C. Wu et al., CENDL-3.2: The new version of Chinese general purpose evaluated nuclear data library. EPJ Web Conf. 239, 09001 (2020). doi: 10.1051/epjconf/202023909001http://doi.org/10.1051/epjconf/202023909001
W. Mondelaers, P. Schillebeeckx, GELINA, a neutron time-of-flight facility for high-resolution neutron data measurements. Research Infrastructures (2), 19–25 (2006). https://publications.jrc.ec.europa.eu/repository/handle/JRC35644
I. Sirakov, B. Becker, R. Capote et al., Results of total cross section measurements for 197Au in the neutron energy region from 4 to 108 keV at GELINA. Eur. Phys. J. A 49, 144 (2013). doi: 10.1140/epja/i2013-13144-2http://doi.org/10.1140/epja/i2013-13144-2
R. Hannaske, Z. Elekes, R. Beyer et al., Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source. Eur. Phys. J. A 49, 137 (2013). doi: 10.1140/epja/i2013-13137-1http://doi.org/10.1140/epja/i2013-13137-1
A. Junghans, R. Beyer, J. Claußner et al., Neutron transmission measurements at nELBE. EPJ Web Conf. 239, 01006 (2020). doi: 10.1051/epjconf/202023901006http://doi.org/10.1051/epjconf/202023901006
L.X. Liu, H.W. Wang, Y.G. Ma et al., Measurements of the total cross section of natBe with thermal neutrons from a photo-neutron source. Nucl. Instrum. Methods B 410, 158-163 (2017). doi: 10.1016/j.nimb.2017.08.022http://doi.org/10.1016/j.nimb.2017.08.022
S. G. Shin, Y.-U. Kye, M.-H. Cho et al., Neutron total cross-section measurements with the 6Li-Zns (Ag) scintillator (BC702) employing a neutron and noise separation technique. J. Korean Phys. Soc. 64 (9), 1288-1292 (2014). doi: 10.3938/jkps.64.1288http://doi.org/10.3938/jkps.64.1288
Y.H. Chen, G.Y. Luan, J. Bao et al., Neutron energy spectrum measurement of the Back-n white neutron source at CSNS. Eur. Phys. J. A 55, 115 (2019). doi: 10.1140/epja/i2019-12808-1http://doi.org/10.1140/epja/i2019-12808-1
G. F. Knoll, Radiation detection and measurement (fourth edition). John Wiley & Sons (2010)
E. Garutti, Yu. Musienko, Radiation damage of SiPMs. Nucl. Instr. Methods A 926, 69–84 (2019). doi: 10.191http://doi.org/10.191
B. Biró, G. David, A. Fenyvesi et al., A comparison of the effects of neutron and gamma radiation in silicon photomultipliers. IEEE Trans. Nucl. Sci. 66 (7), 1833-1839 (2019). doi: 10.1109/TNS.2019.2921102http://doi.org/10.1109/TNS.2019.2921102
J. Glodo, E. van Loef, R. Hawrami et al., Selected properties of Cs2LiYCl6, Cs2LiLaCl6, and Cs2LiLaBr6 scintillators. IEEE Trans. Nucl. Sci. 58 (1), 333-338 (2011). doi: 10.2098045http://doi.org/10.2098045
R. S. Woolf, E. A. Wulf, B. F. Phlips et al., Identification of internal radioactive contaminants in elpasolites (CLYC, CLLB, CLLBC) and other inorganic scintillators. Nucl. Instr. Methods A 954, 161228 (2020). doi: 10.1016/j.nima.2018.09.063http://doi.org/10.1016/j.nima.2018.09.063
J. Glodo, R. Hawrami, E. van Loef et al., Pulse shape discrimination with selected elpasolite crystals. IEEE Trans. Nucl. Sci. 59 (5), 2328-2333 (2012). doi: 10.1109/TNS.2012.2188646http://doi.org/10.1109/TNS.2012.2188646
K.-N. Li, X.-P. Zhang, Q. Gui et al., Characterization of the new scintillator Cs2LiYCl6: Ce3+. Nucl. Sci. Tech 29 (1), 1-6 (2018). doi: 10.1007/s41365-017-0342-4http://doi.org/10.1007/s41365-017-0342-4
S. Agostinelli, J. Allison, K. a. Amako et al., GEANT4—a simulation toolkit. Nucl. Instr. Methods A 506 (3), 250-303 (2003). doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
J. Allison, K. Amako, J. Apostolakis et al., Recent developments in Geant4. Nucl. Instr. Methods A 835, 186-225 (2016). doi: 10.1016/j.nima.2016.06.125http://doi.org/10.1016/j.nima.2016.06.125
J. Ren, X.-C. Ruan, Y.-H. Chen et al., In-beam γ-rays of back-streaming white neutron source at china spallation neutron source. Acta Phys. Sin. 69 (17), 20200718 (2020). doi: 10.7498/aps.69.20200718http://doi.org/10.7498/aps.69.20200718
E. Dietz-Laursonn, Peculiarities in the simulation of optical physics with Geant4, arXiv:1612.05162 2016. https://doi.org/10.48550/arXiv.1612.05162
U. Shirwadkar, J. Glodo, E. V. Van Loef et al., Scintillation properties of Cs2LiLaBr6(CLLB) crystals with varying Ce3+ concentration. Nucl. Instr. Methods A 652 (1), 268-270 (2011). doi: 10.1016/j.nima.2010.08.050http://doi.org/10.1016/j.nima.2010.08.050
J. Meadows, Cf 252 fission neutron spectrum from 0.003 to 15.0 MeV. Phys. Rev 157 (4), 1076 (1967). doi: 10.1103/PhysRev.157.1076http://doi.org/10.1103/PhysRev.157.1076
D. Zhao, S. Feng, C. Hu et al., Characterization of the neutron/γ-ray discrimination performance in an EJ-301 liquid scintillator for application to prompt fission neutron spectrum measurements at CSNS. Radiat. Meas. 151, 106703 (2022). doi: 10.1016/j.radmeas.2022.106703http://doi.org/10.1016/j.radmeas.2022.106703
H. Arahmane, E.M. Hamzaoui, Y. Ben Maissa et al., Neutron-gamma discrimination method based on blind source separation and machine learning. Nucl. Sci. Tech. 32, 18 (2021). doi: 10.1007/s41365-021-00850-whttp://doi.org/10.1007/s41365-021-00850-w
N. D’olympia, P. Chowdhury, C. Lister et al., Pulse-shape analysis of CLYC for thermal neutrons, fast neutrons, and gamma-rays. Nucl. Instr. Methods A 714, 121-127 (2013). doi: 10.1016/j.nima.2013.02.043http://doi.org/10.1016/j.nima.2013.02.043
P. R. Menge, J. Lejay, V. Ouspenski, Design and performance of a compact Cs2LiLaBr6(Ce) neutron/gamma detector using silicon photomultipliers. IEEE Nucl. Sci. Symp. Med. Imaging Conf. Rec. 1–5 (2015). doi: 10.1109/NSSMIC.2015.7581858http://doi.org/10.1109/NSSMIC.2015.7581858
K. Yang, P. R. Menge, J. Lejay et al., Scintillation properties and temperature responses of Cs2LiLaBr6: Ce 3+. IEEE Nucl. Sci. Symp. Med. Imaging Conf. Rec. 1–6 (2013). doi: 10.1109/NSSMIC.2013.6829676http://doi.org/10.1109/NSSMIC.2013.6829676
Q. Wang, X. Tuo, C. Deng et al., Characterization of a Cs2LiYCl6: Ce3+ scintillator coupled with two silicon photomultiplier arrays of different sizes. Nucl. Instr. Methods A 942, 162339 (2019). doi: 10.1016/j.nima.2019.162339http://doi.org/10.1016/j.nima.2019.162339
F. Liang and J. Smith, Characterization of CLLBC coupled to silicon photomultipliers. IEEE Trans. Nucl. Sci. 67 (6), 927-932 (2020). doi: 10.1109/TNS.2020.2988555http://doi.org/10.1109/TNS.2020.2988555
P. Hu, Z.-G. Ma, K. Zhao et al., Development of gated fiber detectors for laser-induced strong electromagnetic pulse environments. Nucl. Sci. Tech. 32, 58 (2021). doi: 10.1007/s41365-021-00898-8http://doi.org/10.1007/s41365-021-00898-8
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution