1.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2.School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3.Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
† yuancx@mail.sysu.edu.cn
Scan for full text
Yu-Feng Gao, Bo-Shuai Cai, Cen-Xi Yuan. Investigation of
Yu-Feng Gao, Bo-Shuai Cai, Cen-Xi Yuan. Investigation of
β,-decay half-life and ,β,-delayed neutron emission (,βn,) are of great importance in the development of basic science and industrial applications, such as nuclear physics and nuclear energy, where ,β,-,-decay plays an important role. Many theoretical models have been proposed to describe ,β,-decay half-lives, whereas the systematic study of ,βn, is still rare. This study aimed to investigate ,β,-,-decay half-lives and ,βn, probabilities through analytical formulas and by comparing them with experimental data. Analytical formulas for ,β,-,-decay properties have been proposed by considering prominent factors, that is, decay energy, odevity, and the shell effect. The bootstrap method was used to simultaneously evaluate the total uncertainty on calculations, which was composed of statistic and systematic uncertainties. ,β,-,-decay half-lives,βn, probabilities, and the corresponding uncertainties were evaluated for the neutron-rich region. The experimental half-lives were well reproduced. Additional predictions are also presented with theoretical uncertainties, which helps to better understand the disparity between the experimental and theoretical results.
Neutron-rich nucleusβ-delayed neutron emissionsBootstrap method
R. Barton, R. Mcpherson, R.E. Bell et al., Observation of delayed proton radioactivity. Can. J. Phys. 41, 2007-2025 (1963). doi: 10.1139/p63-201http://doi.org/10.1139/p63-201
M.D. Cable, J. Honkanen, R.F. Parry et al., Discovery of beta-delayed two-proton radioactivity: 22Al. Phys. Rev. Lett. 50, 404-406 (1983). doi: 10.1103/PhysRevLett.50.404http://doi.org/10.1103/PhysRevLett.50.404
K. Miernik, W. Dominik, Z. Janas et al., First observation of β-delayed three-proton emission in 45Fe. Phys. Rev. C 76, 041304 (2007). doi: 10.1103/PhysRevC.76.041304http://doi.org/10.1103/PhysRevC.76.041304
N. Frédéric, O. Alexandre, P. Alfredo, The neutron-rich edge of the nuclear landscape: Experiment and theory. Prog. Part. Nucl. Phys. 120, 103866 (2021). https://www.sciencedirect.com/science/article/pii/S014664102100020Xhttps://www.sciencedirect.com/science/article/pii/S014664102100020Xdoi: 10.1016/j.ppnp.2021.103866http://doi.org/10.1016/j.ppnp.2021.103866
X. P. Zhang, Z.Z. Ren, Q.J. Zhi et al., Systematics of β--decay half-lives of nuclei far from the β-stable line. J. Phys. G Nucl. Part. Phys. 34, 2611-2632 (2007). doi: 10.1088/0954-3899/34/12/007http://doi.org/10.1088/0954-3899/34/12/007
D. Z. Chen, D.L. Fang, C.L. Bai, Impact of finite-range tensor terms in the Gogny force on the β -decay of magic nuclei. Nucl. Sci. Tech. 32, 74 (2021). doi: 10.1007/s41365-021-00908-9http://doi.org/10.1007/s41365-021-00908-9
X. Zhou, M. Wang, Y.H. Zhang et al., Charge resolution in the isochronous mass spectrometry and the mass of 51Co. Nucl. Sci. Tech. 32, 37 (2021). doi: 10.1007/s41365-021-00876-0http://doi.org/10.1007/s41365-021-00876-0
W. Nan, B. Bing, C.J. Lin et al., First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at BRIF: measurement of the angular distribution of 23Na + 40Ca elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). doi: 10.1007/s41365-021-00889-9http://doi.org/10.1007/s41365-021-00889-9
S.W. Bai, X.F. Yang, S.J. Wang et al., Commissioning of a high-resolution collinear laser spectroscopy apparatus with a laser ablation ion source. Nucl. Sci. Tech. 33, 9 (2022). doi: 10.1007/s41365-022-00992-5http://doi.org/10.1007/s41365-022-00992-5
W. Liu, J.L. Lou, Y.L. Ye et al., Experimental study of intruder components in light neutron-rich nuclei via single-nucleon transfer reaction. Nucl. Sci. Tech. 31, 20 (2020). doi: 10.1007/s41365-020-0731-yhttp://doi.org/10.1007/s41365-020-0731-y
Z.P. Gao, Y.J. Wang, H.L. Lü, et al., Machine learning the nuclear mass. Nucl. Sci. Tech. 32, 109 (2021). doi: 10.1007/s41365-021-00956-1http://doi.org/10.1007/s41365-021-00956-1
L. Zhou, S.M. Wang, D.Q. Fang, et al., Recent progress in two-proton radioactivity. Nucl. Sci. Tech. 33, 105 (2022). doi: 10.1007/s41365-022-01091-1http://doi.org/10.1007/s41365-022-01091-1
M.J.G. Borge, β-delayed particle emission. Phys. Scr. T152, 014013 (2013). doi: 10.1088/0031-8949/2013/t152/014013http://doi.org/10.1088/0031-8949/2013/t152/014013
L. Zhou, D.Q. Fang, Effect of source size and emission time on the p–p momentum correlation function in the two-proton emission process. Nucl. Sci. Tech. 31, 52 (2020). doi: 10.1007/s41365-020-00759-whttp://doi.org/10.1007/s41365-020-00759-w
H. C. Manjunatha, N. Sowmya, P. S. Damodara Gupta et al., Investigation of decay modes of superheavy nuclei. Nucl. Sci. Tech. 32, 130 (2021). doi: 10.1007/s41365-021-00967-yhttp://doi.org/10.1007/s41365-021-00967-y
Z.X. Fang, M. Yu, Y.G. Huang, et al., Theoretical analysis of long-lived radioactive waste in pressurized water reactor. Nucl. Sci. Tech. 32, 72 (2021). doi: 10.1007/s41365-021-00911-0http://doi.org/10.1007/s41365-021-00911-0
H. M. Şahin, G. Tunç, A. Karakoç, et al., Neutronic study on the effect of first wall material thickness on tritium production and material damage in a fusion reactor. Nucl. Sci. Tech. 33, 39-69 (2022). doi: 10.1007/s41365-022-01029-7http://doi.org/10.1007/s41365-022-01029-7
J. Suhonen, Value of the axial-vector coupling strength in β and ββ decays: A review. Front. Phys 5, 55 (2017). doi: 10.3389/fphy.2017.00055http://doi.org/10.3389/fphy.2017.00055
A. Ravlić, E. Yüksel, Y.F. Niu et al., Evolution of β-decay half-lives in stellar environments. Phys. Rev. C 104, 054318 (2021). doi: 10.1103/PhysRevC.104.054318http://doi.org/10.1103/PhysRevC.104.054318
F. Minato, T. Marketin, P. Nils, β-delayed neutron-emission and fission calculations within relativistic quasiparticle random-phase approximation and a statistical model. Phys. Rev. C 104, 044321 (2021). doi: 10.1103/PhysRevC.104.044321http://doi.org/10.1103/PhysRevC.104.044321
Z.M. Niu., Y.F. Niu, H.Z. Liang et al., β-decay half-lives of neutron-rich nuclei and matter flow in the r-process. Phys. Lett. B 723, 172-176 (2013). https://www.sciencedirect.com/science/article/pii/S0370269313003377https://www.sciencedirect.com/science/article/pii/S0370269313003377doi: 10.1016/j.physletb.2013.04.048http://doi.org/10.1016/j.physletb.2013.04.048
P. Möller, M. R. Mumpower, T. Kawano, Nuclear properties for astrophysical and radioactive-ion-beam applications (II). Atom. Data Nucl. Data Tables 125, 1-192 (2019). https://www.sciencedirect.com/science/article/pii/S0092640X18300263https://www.sciencedirect.com/science/article/pii/S0092640X18300263doi: 10.1016/j.adt.2018.03.003http://doi.org/10.1016/j.adt.2018.03.003
S. Yoshida, Y. Utsuno, N. Shimizu et al., Systematic shell-model study of β-decay properties and Gamow-Teller strength distributions in neutron-rich nuclei. Phys. Rev. C 97, 054321 (2018). doi: 10.1103/PhysRevC.97.054321http://doi.org/10.1103/PhysRevC.97.054321
E. Mardones, J. Barea, C.E. Alonso β-decay rates of 121-131Cs in the microscopic interacting boson-fermion model. Phys. Rev. C 93, 044306 (2016). doi: 10.1103/PhysRevC.93.034332http://doi.org/10.1103/PhysRevC.93.034332
J. Ferretti, J. Kotila, R.I. Vsevolodovna et al., β-decay rates of 115,117Rh into 115,117Pd isotopes in the microscopic interacting boson-fermion model. Phys. Rev. C 102, 054329 (2020). doi: 10.1103/PhysRevC.102.054329http://doi.org/10.1103/PhysRevC.102.054329
K. Nomura, β decay and evolution of low-lying structure in Ge and As nuclei. Phys. Rev. C 105, 044306 (2022). doi: 10.1103/PhysRevC.105.044306http://doi.org/10.1103/PhysRevC.105.044306
I. N. Borzov, S. Goriely, J. M. Pearson, Microscopic calculations of β-decay characteristics near the A = 130 r-process peak. Nucl. Phys. A 81, 044620 (2010). doi: 10.1103/PhysRevC.81.044620http://doi.org/10.1103/PhysRevC.81.044620
I. N. Borzov, J. J. Cuenca-Garca, K. Langanke, et al., Beta-decay of Z <50 nuclei near the N=82 closed neutron shell. Nucl. Phys. A 814, 159-173 (2008). https://www.sciencedirect.com/science/article/pii/S0375947408007148https://www.sciencedirect.com/science/article/pii/S0375947408007148doi: 10.1016/j.nuclphysa.2008.09.010http://doi.org/10.1016/j.nuclphysa.2008.09.010
J.J. Cuenca-Garca, G. Martnez-Pinedo, K. Langanke et al., Shell model half-lives for r-process N = 82 nuclei. Eur. Phys. J. A 34, 99-105 (2007). doi: 10.1140/epja/i2007-10477-3http://doi.org/10.1140/epja/i2007-10477-3
K. Yoshida, Suddenly shortened half-lives beyond magic number and high-energy nonunique first-forbidden. Phys. Rev. C 100, 024316 (2019). doi: 10.1103/PhysRevC.100.024316http://doi.org/10.1103/PhysRevC.100.024316
K. Miernik, Phenomenological model of β-delayed neutron-emission probability. Phys. Rev. C 88, 041301 (2013). doi: 10.1103/PhysRevC.88.041301http://doi.org/10.1103/PhysRevC.88.041301
A. I. Morales, J. Benlliure, T. Kurtukián-Nieto et al., Half-Life Systematics across the N = 126 Shell closure: Role of first-forbidden transitions in the β decay of heavy neutron-rich nuclei. Phys. Rev. Lett. 113 022702 (2014). doi: 10.1103/PhysRevLett.113.022702http://doi.org/10.1103/PhysRevLett.113.022702
Y. Zhou, Z.H. Li, Y. B. Wang et al., Empirical formula for β--decay half-lives of r-process nuclei. Sci. China. Phys. Mech. Astron. 60, 082012 (2017). doi: 10.1007/s11433-017-9045-0http://doi.org/10.1007/s11433-017-9045-0
B. Pfeiffer, K.L. Kratz, P. Möller et al., Status of delayed-neutron precursor data: half-lives and neutron emission probabilities. Prog. Nucl. Energy 41, 39-69 (2002). https://www.sciencedirect.com/science/article/pii/S0149197002000057https://www.sciencedirect.com/science/article/pii/S0149197002000057doi: 10.1016/S0149-1970(02)00005-7http://doi.org/10.1016/S0149-1970(02)00005-7
D. Benzaid, S. Bentridi, A. Kerraci et al., Bethe-Weizsäcker semiempirical mass formula coefficients 2019 update based on AME2016. Nucl. Sci. Tech. 31, 9 (2020). doi: 10.1007/s41365-019-0718-8http://doi.org/10.1007/s41365-019-0718-8
M. Wang, W. J. Huang, F. G. Kondev et al., The AME 2020 atomic mass evaluation (II). Tables, graphs and references∗, Chinese Phys. C 45, 030003 (2021). doi: 10.1088/1674-1137/abddafhttp://doi.org/10.1088/1674-1137/abddaf
G. Audi, A. H. Wapstra, C. Thibault, The AME2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl. Phys. A 729, 337-676 (2003). https://www.sciencedirect.com/science/article/pii/S0375947403018098https://www.sciencedirect.com/science/article/pii/S0375947403018098doi: 10.1016/j.nuclphysa.2003.11.003http://doi.org/10.1016/j.nuclphysa.2003.11.003
P. T. Hosmer, H. Schatz, A. Aprahamian, et al., Half-Life of the doubly magic r-process nucleus. Phys. Rev. Lett. 94, 112501. doi: 10.1103/PhysRevLett.94.112501http://doi.org/10.1103/PhysRevLett.94.112501
R. Dunlop, V. Bildstein, I. Dillmann et al., Half-lives of neutron-rich 128-130Cd. Phys. Rev. C 93, 062801 (2016). doi: 10.1103/PhysRevC.93.062801http://doi.org/10.1103/PhysRevC.93.062801
T. Marketin, L. Huther, G. Martnez-Pinedo, Large-scale evaluation of β-decay rates of r-process nuclei with the inclusion of first-forbidden transitions. Phys. Rev. C 93, 025805 (2016). doi: 10.1103/PhysRevC.93.025805http://doi.org/10.1103/PhysRevC.93.025805
J.L. You, X.P. Zhang, Q.J. Zhi et al., The contribution of the first forbidden transitions to the nuclear β--decay half-life. Chinese Phys. C 43, 114104 (2019). doi: 10.1088/1674-1137/43/11/114104http://doi.org/10.1088/1674-1137/43/11/114104
C.L. Lan, M. Peng, Y. Zhang et al., Possible cluster states in heavy and superheavy nuclei. Nucl. Sci. Tech. 104, L031301 (2017). doi: 10.1007/s41365-016-0158-7http://doi.org/10.1007/s41365-016-0158-7
J. Liang, B. Singh, E. A. McCutchan, I. Dillmann et al., Compilation and evaluation of β-delayed neutron emission probabilities and half-Lives for Z > 28 precursors. Nucl. Data Sheets 168, 1-116 (2020). doi: 10.1016/j.nds.2020.09.001http://doi.org/10.1016/j.nds.2020.09.001
J. Suhonen, From nucleons to nucleus: Concepts of microscopic nuclear theory (Springer Science & Business Media, 2007), pp. 163-164.
H. Primakoff, S. P. Rosen, Double beta decay. Rep. Prog. Phys. 22, 121 (1959). doi: 10.1088/0034-4885/22/1/305http://doi.org/10.1088/0034-4885/22/1/305
B. Efron, R. Tibshirani, The bootstrap method for assessing statistical accuracy. Behaviormetrika 12, 1-35 (1985). doi: 10.2333/bhmk.12.171http://doi.org/10.2333/bhmk.12.171
B.S. Cai, G.S. Chen, J.Y. Xu et al., α decay half-life estimation and uncertainty analysis. Phys. Rev. C 101, 054304 (2020). doi: 10.1103/PhysRevC.101.054304http://doi.org/10.1103/PhysRevC.101.054304
Y.P. Cao, D.H. Lu, Y.B. Qian et al., Uncertainty analysis for the nuclear liquid drop model and implications for the symmetry energy coefficients. Phys. Rev. C 105, 034304 (2022). doi: 10.1103/PhysRevC.105.034304http://doi.org/10.1103/PhysRevC.105.034304
B.S. Cai, G.S. Chen, C.X. Yuan et al., Shell-model study on properties of proton dripline nuclides with Z, N = 30-50 including uncertainty analysis. Chinese Phys. C 46, 084104 (2022). doi: 10.1088/1674-1137/ac6cd7http://doi.org/10.1088/1674-1137/ac6cd7
J.H. Jia, Y.B. Qian, Z.Z. Ren, Possible cluster states in heavy and superheavy nuclei. Phys. Rev. C 104, L031301 (2021). doi: 10.1103/PhysRevC.104.L031301http://doi.org/10.1103/PhysRevC.104.L031301
G. Martínez-Pinedo, K. Langanke, Shell model applications in nuclear astrophysics. Physics 4, 677-689 (2022). doi: 10.3390/physics4020046http://doi.org/10.3390/physics4020046
V.H. Phong, S. Nishimura, G. Lorusso et al., β-Delayed One and Two Neutron Emission Probabilities Southeast of 132Sn and the Odd-Even Systematics in r-Process Nuclide Abundances. Phys. Rev. Lett. 129, 172701 (2022). doi: 10.1103/PhysRevLett.129.172701http://doi.org/10.1103/PhysRevLett.129.172701
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution