1.School of Life Science, Shaoxing University, Shaoxing 312000, China
2.College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
* xkwang@ipp.ac.cn
Scan for full text
Ya-Wen Cai, Ming Fang, Bao-Wei Hu, et al. Efficient extraction of U(VI) ions from solutions. [J]. Nuclear Science and Techniques 34(1):2(2023)
Ya-Wen Cai, Ming Fang, Bao-Wei Hu, et al. Efficient extraction of U(VI) ions from solutions. [J]. Nuclear Science and Techniques 34(1):2(2023) DOI: 10.1007/s41365-022-01154-3.
The rapid development of advanced techniques for selective and efficient U(VI) extraction from aqueous solutions is essential for addressing U(VI) environmental pollution and energy issues. Here, we share recent progress in U(VI) extraction from aqueous solutions, especially the most frequently applied techniques such as adsorption, catalysis (photocatalysis, piezocatalysis, and electrocatalysis), chemical deposition, and reduction by zero-valent metal particles. We attempt to elucidate the strategies and various mechanisms that contribute to the enhancement of selective U(VI) extraction. At the end of our review, we highlight the outlook, challenges, and prospects for the development of this field.
Uranium extractionAdsorptionCatalysisReductionChemical deposition
M.-L. Tan, G.-F. Zhu, Z.-D. Zhang et al., Burnup optimization of once-through molten salt reactors using enriched uranium and thorium. Nucl. Sci. Tech. 33, 5 (2022). doi: 10.1007/s41365-022-00995-2http://doi.org/10.1007/s41365-022-00995-2
D. S. Sholl and R. P. Lively, Seven chemical separations to change the world. Nature 532, 435-437 (2016). doi: 10.1038/532435ahttp://doi.org/10.1038/532435a
S. Kushwaha and K. Patel, Catalyst: uranium extraction from seawater, a paradigm shift in resource recovery. Chem 7, 271-274 (2021). doi: 10.1016/j.chempr.2021.01.008http://doi.org/10.1016/j.chempr.2021.01.008
L. Grancea, M. Mihalasky, M. Fairclough et al., Uranium 2020: Resources, Production and Demand[R]. No. NEA--7551. Organisation for Economic Co-Operation and Development, 2020.
Q. Yu, Y. Yuan, L. Feng et al., Spidroin-Inspired, High-Strength, Loofah-Shaped Protein Fiber for Capturing Uranium from Seawater. Angew. Chem. Int. Ed. 59, 15997-16001 (2020). doi: 10.1002/anie.202007383http://doi.org/10.1002/anie.202007383
H. Yang, Y. Liu, Z. Chen et al., Emerging technologies for uranium extraction from seawater. Science China Chem. 65, 2335-2337 (2022). doi: 10.1007/s11426-022-1358-1http://doi.org/10.1007/s11426-022-1358-1
B. Yan, C. Ma, J. Gao et al., An Ion-Crosslinked Supramolecular Hydrogel for Ultrahigh and Fast Uranium Recovery from Seawater. Adv. Mater. 32, 1906615 (2020). doi: 10.1002/adma.201906615http://doi.org/10.1002/adma.201906615
W. Sun, L. Feng, L. Zhang et al., Amidoxime Group-Anchored Single Cobalt Atoms for Anti-Biofouling during Uranium Extraction from Seawater. Adv. Sci., 9, 2105008 (2022). doi: 10.1002/advs.202105008http://doi.org/10.1002/advs.202105008
Y. Yuan, Q. Yu, M. Cao et al., Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. Nat. Sustain. 4, 708-714 (2021). doi: 10.1038/s41893-021-00709-3http://doi.org/10.1038/s41893-021-00709-3
X. Liu, A. Zhang, R. Ma et al., Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chinese Chem. Lett. 33, 3549-3555 (2022). doi: 10.1016/j.cclet.2022.03.001http://doi.org/10.1016/j.cclet.2022.03.001
J. Li, B. Li, N. Shen et al., Task-Specific Tailored Cationic Polymeric Network with High Base-Resistance for Unprecedented 99TcO4– Cleanup from Alkaline Nuclear Waste. ACS Cent. Sci. 7, 1441-1450 (2021). doi: 10.1021/acscentsci.1c00847http://doi.org/10.1021/acscentsci.1c00847
Y. Wang, S. Hu, L. Cheng et al., Stabilization of Plutonium(V) Within a Crown Ether Inclusion Complex. CCS Chem. 2, 425-431 (2020). doi: 10.31635/ccschem.020.202000152http://doi.org/10.31635/ccschem.020.202000152
T. Chen, K. Yu, C. Dong et al. Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives. Coordin. Chem. Rev. 467, 214615 (2022). doi: 10.1016/j.ccr.2022.214615http://doi.org/10.1016/j.ccr.2022.214615
Y. Zhang, H. Liu, F. Gao et al., Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem 4, 100078 (2022). doi: 10.1016/j.enchem.2022.100078http://doi.org/10.1016/j.enchem.2022.100078
X. Liu, G. Verma, Z. Chen et al., Metal-Organic Framework Nanocrystals Derived Hollow Porous Materials: Synthetic Strategies and Emerging Applications. The Innovation 3, 100281 (2022). doi: 10.1016/j.xinn.2022.100281http://doi.org/10.1016/j.xinn.2022.100281
Y. Cai, Y. Zhang, Z. Lv et al., Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process. Appl. Catal. B-Environ. 310, 121343 (2022). doi: 10.1016/j.apcatb.2022.121343http://doi.org/10.1016/j.apcatb.2022.121343
G. Cheng, A. Zhang, Z. Zhao et al., Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Sci. Bull. 66, 1994-2001 (2021). doi: 10.1016/j.scib.2021.05.012http://doi.org/10.1016/j.scib.2021.05.012
L. Xu, J.-T. Hu, H.-J. Ma et al., Amidoxime-based adsorbents prepared by cografting acrylic acid with acrylonitrile onto HDPE fiber for the recovery of uranium from seawater. Nucl. Sci. Tech. 28, 45 (2017). doi: 10.1007/s41365-017-0198-7http://doi.org/10.1007/s41365-017-0198-7
X. Xu, X.-J. Ding, J.-X. Ao et al., Preparation of amidoxime-based PE/PP fibers for extraction of uranium from aqueous solution. Nucl. Sci. Tech. 30, 20 (2019). doi: 10.1007/s41365-019-0543-0http://doi.org/10.1007/s41365-019-0543-0
Y. Hu, X. Wang, Y. Zou et al., Superior sorption capacities of Ca-Ti and Ca-Al bimetallic oxides for U(VI) from aqueous solutions. Chem. Eng. J. 316, 419-428 (2017). doi: 10.1016/j.cej.2017.01.115http://doi.org/10.1016/j.cej.2017.01.115
X. Wang, Y. Cai, T. Han et al., Phosphate functionalized layered double hydroxides (phos-LDH) for ultrafast and efficient U(VI) uptake from polluted solutions. J. Hazard. Mater. 399, 123081 (2020). doi: 10.1016/j.jhazmat.2020.123081http://doi.org/10.1016/j.jhazmat.2020.123081
Y. Cai, Y. Ma, J. Feng et al., Insight into the performance and mechanism of low-cost phytic acid modified Zn-Al-Ti LMO for U(VI) removal. Chem. Eng. J. 402, 125510 (2020). doi: 10.1016/j.cej.2020.125510http://doi.org/10.1016/j.cej.2020.125510
M. Hao, Z. Chen, H. Yang et al., Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4−. Sci. Bull. 67, 924-932 (2022). doi: 10.1016/j.scib.2022.02.012http://doi.org/10.1016/j.scib.2022.02.012
M. Hao, Z. Chen, X. Liu, et al., Converging Cooperative Functions into the Nanospace of Covalent Organic Frameworks for Efficient Uranium Extraction from Seawater. CCS Chem. 4, 2294-2307 (2022). doi: 10.31635/ccschem.022.202201897http://doi.org/10.31635/ccschem.022.202201897
P. Duan, D.-Y. Lin, W.-T. Yang et al., Facile preparation of covalent organic frameworks@alginate composite beads for enhanced uranium(VI) adsorption. Rare Met. 41, 1323-1331 (2022). doi: 10.1007/s12598-021-01884-0http://doi.org/10.1007/s12598-021-01884-0
H. Zhang, W. Liu, A. Li et al., Three Mechanisms in One Material: Uranium Capture by a Polyoxometalate–Organic Framework through Combined Complexation, Chemical Reduction, and Photocatalytic Reduction. Angew. Chem. Int. Ed. 58, 16110-16114 (2019). doi: 10.1002/anie.201909718http://doi.org/10.1002/anie.201909718
H. Zhu, J. Yuan, X. Tan et al., Efficient removal of Pb2+ by Tb-MOFs: identifying the adsorption mechanism through experimental and theoretical investigations. Environ. Sci.: Nano 6, 261-272 (2019). doi: 10.1039/C8EN01066Hhttp://doi.org/10.1039/C8EN01066H
W. Yang, Q. Pan, S. Song et al., Metal-organic framework-based materials for the recovery of uranium from aqueous solutions. Inorg. Chem. Front. 6, 1924-1937 (2019). doi: 10.1039/C9QI00386Jhttp://doi.org/10.1039/C9QI00386J
X. Wang, J. Feng, Y. Cai et al., Porous biochar modified with polyethyleneimine (PEI) for effective enrichment of U(VI) in aqueous solution. Sci. Total Environ. 708, 134575 (2020). doi: 10.1016/j.scitotenv.2019.134575http://doi.org/10.1016/j.scitotenv.2019.134575
H. Chen, Y. Gao, J. Li et al., Engineered biochar for environmental decontamination in aquatic and soil systems: a review. Carbon Res. 1, 4 (2022). doi: 10.1007/s44246-022-00005-5http://doi.org/10.1007/s44246-022-00005-5
X. Song, P. Wang, L. Van Zwieten et al., Towards a better understanding of the role of Fe cycling in soil for carbon stabilization and degradation. Carbon Res. 1, 5 (2022). doi: 10.1007/s44246-022-00008-2http://doi.org/10.1007/s44246-022-00008-2
Z. Xu, D.C.W. Tsang, Redox-induced transformation of potentially toxic elements with organic carbon in soil. Carbon Res. 1, 9 (2022). doi: 10.1007/s44246-022-00010-8http://doi.org/10.1007/s44246-022-00010-8
X. Yang, X. Liu, Y. Liu et al., Optimizing Iodine Capture Performance by Metal-Organic Framework Containing with Bipyridine Units. Front. Chem. Sci. Eng. (2022). https://doi.org/10.1007/s11705-022-2218-3
J. Li, X. Wang, G. Zhao et al., Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 47, 2322-2356 (2018). doi: 10.1039/C7CS00543Ahttp://doi.org/10.1039/C7CS00543A
Y. Wu, H. Pang, W. Yao et al., Synthesis of rod-like metal-organic framework (MOF-5) nanomaterial for efficient removal of U(VI): batch experiments and spectroscopy study. Sci. Bull. 63, 831-839 (2018). doi: 10.1016/j.scib.2018.05.021http://doi.org/10.1016/j.scib.2018.05.021
Z. Zhao, G. Cheng, Y. Zhang et al., Metal-Organic-Framework Based Functional Materials for Uranium Recovery: Performance Optimization and Structure/Functionality-Activity Relationships, ChemPlusChem 86, 1177-1192 (2021). doi: 10.1002/cplu.202100315http://doi.org/10.1002/cplu.202100315
W. Chen, Y. Cai, Z. Lv et al., Improvement of U(VI) removal by tuning magnetic metal organic frameworks with amine ligands. J. Mol. Liq. 334, 116495 (2021). doi: 10.1016/j.molliq.2021.116495http://doi.org/10.1016/j.molliq.2021.116495
Y. Cai, Q. Ling, Y. Yi et al., Application of covalent organic frameworks in environmental pollution management. Appl. Catal. A-Gen. 643, 118733 (2022). doi: 10.1016/j.apcata.2022.118733http://doi.org/10.1016/j.apcata.2022.118733
G.M. Marion, F.J. Millero, M.F. Camões et al. pH of seawater. Mar. Chem. 126, 89-96 (2011). doi: 10.1016/j.marchem.2011.04.002http://doi.org/10.1016/j.marchem.2011.04.002
C. W. Abney, R. T. Mayes, T. Saito et al., Materials for the Recovery of Uranium from Seawater. Chem. Rev. 117, 13935-14013 (2017). doi: 10.1021/acs.chemrev.7b00355http://doi.org/10.1021/acs.chemrev.7b00355
H. Gu, X. Liu, S. Wang et al. COF-based composites: extraordinary removal performance for heavy metals and radionuclides from aqueous solutions. Rev. Environ. Contam. Toxicol. 260, 23 (2022). doi: 10.1007/s44169-022-00018-6http://doi.org/10.1007/s44169-022-00018-6
Y. Zhang, M. Zhu, S. Zhang et al., Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Appl. Catal. B-Environ. 279, 119390 (2020). doi: 10.1016/j.apcatb.2020.119390http://doi.org/10.1016/j.apcatb.2020.119390
L. Yao, Y. Hu, Y. Zou et al., Selective and Efficient Photoextraction of Aqueous Cr(VI) as a Solid-State Polyhydroxy Cr(V) Complex for Environmental Remediation and Resource Recovery. Environ. Sci. Technol. 56, 14030-14037 (2022). doi: 10.1021/acs.est.2c03994http://doi.org/10.1021/acs.est.2c03994
Y. Hu, D. Tang, Z. Shen et al., Photochemically triggered self-extraction of uranium from aqueous solution under ambient conditions. Appl. Catal. B-Environ. 322, 122092 (2023). doi: 10.1016/j.apcatb.2022.122092http://doi.org/10.1016/j.apcatb.2022.122092
L. Yao, Z. Shen, Z. Ji et al., Cr(VI) detoxification and simultaneous selective recovery of Cr resource from wastewater via photo-chemical extraction using biomass. Sci. Bull. 67, 2154-2157 (2022). doi: 10.1016/j.scib.2022.10.013http://doi.org/10.1016/j.scib.2022.10.013
Z. Liu, Z. Xu, L. Xu et al., Modified biochar: Synthesis and mechanism for removal of environmental heavy metals. Carbon Res. 1, 8 (2022). doi: 10.1007/s44246-022-00007-3http://doi.org/10.1007/s44246-022-00007-3
Y. Lu, Y. Cai, L. Zhuang et al., Application of biochar-based photocatalysts for sorption-(photo)degradation/reduction of environmental contaminants: Mechanism, challenges and perspective. Biochar, 4, 45 (2022). doi: 10.1007/s42773-022-00173-yhttp://doi.org/10.1007/s42773-022-00173-y
L. Feng, Y. Yuan, B. Yan et al., Halogen hydrogen-bonded organic framework (XHOF) constructed by singlet open-shell diradical for efficient photoreduction of U(VI). Nat. Comm. 13, 1389 (2022). doi: 10.1038/s41467-022-29107-9http://doi.org/10.1038/s41467-022-29107-9
F. Gao, M. Fang, S. Zhang et al., Symmetry-breaking induced piezocatalysis of Bi2S3 nanorods and boosted by alternating magnetic field. Appl. Catal. B-Environ. 316, 121664 (2022). doi: 10.1016/j.apcatb.2022.121664http://doi.org/10.1016/j.apcatb.2022.121664
M. Zhu, Y. Cai, S. Liu et al., K2Ti6O13 Hybridized Graphene Oxide: Effective Enhancement in Photodegradation of RhB and Photoreduction of U(VI). Environ. Pollut. 248, 448-455 (2019). doi: 10.1016/j.envpol.2019.02.025http://doi.org/10.1016/j.envpol.2019.02.025
S. Li, Y. Hu, Z. Shen et al., Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst. Sci. China Chem. 64, 1323-1331 (2021). doi: 10.1007/s11426-021-9987-1http://doi.org/10.1007/s11426-021-9987-1
Z. Wang, B. Li, H. Shang et al., Photo-induced removal of uranium under air atmosphere without external photocatalyst. Green Chem. 24, 7092-7099 (2022). doi: 10.1039/D2GC02739Ahttp://doi.org/10.1039/D2GC02739A
H. Yang, X. Liu, M. Hao et al., Functionalized Iron−Nitrogen−Carbon Electrocatalyst Provides a Reversible Electron Transfer Platform for Efficient Uranium Extraction from Seawater. Adv. Mater. 33, 2106621 (2021). doi: 10.1002/adma.202106621http://doi.org/10.1002/adma.202106621
X. Liu, Y. Xie, M. Hao et al., Highly Efficient Electrocatalytic Uranium Extraction from Seawater over an Amidoxime−Functionalized In−N−C Catalyst. Adv. Sci. 9, 2201735 (2022). doi: 10.1002/advs.202201735http://doi.org/10.1002/advs.202201735
Y. Zhang, Y. Cai, S. Zhang et al., Super-efficient Extraction of U(VI) by the Dual-functional Sodium Vanadate (Na2V6O16·2H2O) Nanobelts. Chem. Eng. J. 446, 137230 (2022). doi: 10.1016/j.cej.2022.137230http://doi.org/10.1016/j.cej.2022.137230
Z. Chen, X. He, Q. Li et al., Low-temperature plasma induced phosphate groups onto coffee residue-derived porous carbon for efficient U(VI) extraction. J. Environ. Sci. 122, 1-13 (2022). doi: 10.1016/j.jes.2021.10.003http://doi.org/10.1016/j.jes.2021.10.003
H. Pang, Z. Diao, X. Wang et al., Adsorptive and reductive removal of U(VI) by Dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater. Chem. Eng. J. 366, 368-377 (2019). doi: 10.1016/j.cej.2019.02.098http://doi.org/10.1016/j.cej.2019.02.098
H. Pang, Y. Wu, S. Huang et al., Macroscopic and microscopic investigation of uranium elimination by Ca–Mg–Al-layered double hydroxide supported nanoscale zero valent iron. Inorg. Chem. Front. 5, 2657-2665 (2018). doi: 10.1039/C8QI00779Ahttp://doi.org/10.1039/C8QI00779A
H. Tang, S. Zhang, H. Pang et al., Insights into enhanced removal of U(VI) by melamine sponge supported sulfurized nanoscale zero-valent iron. J. Clean. Prod. 329, 129662 (2021). doi: 10.1016/j.jclepro.2021.129662http://doi.org/10.1016/j.jclepro.2021.129662
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution