1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.CAS Innovative Academies in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800, China
3.University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
zhaoxuechao@sinap.ac.cn
† zouyang@sinap.ac.cn
Scan for full text
Xue-Chao Zhao, Yang Zou, Rui Yan, et al. Analysis of burnup performance and temperature coefficient for a small modular molten-salt reactor started with plutonium. [J]. Nuclear Science and Techniques 34(1):17(2023)
Xue-Chao Zhao, Yang Zou, Rui Yan, et al. Analysis of burnup performance and temperature coefficient for a small modular molten-salt reactor started with plutonium. [J]. Nuclear Science and Techniques 34(1):17(2023) DOI: 10.1007/s41365-022-01155-2.
In a thorium-based molten salt reactor (TMSR), it is difficult to achieve the pure ,232,Th–,233,U fuel cycle without sufficient ,233,U fuel supply. Therefore, the original molten salt reactor was designed to use enriched uranium or plutonium as the starting fuel. By exploiting plutonium as the starting fuel and thorium as the fertile fuel, the high-purity ,233,U produced can be separated from the spent fuel by fluorination volatilization. Therefore, the molten salt reactor started with plutonium can be designed as a ,233,U breeder with the burning plutonium extracted from a pressurized water reactor (PWR). Combining these advantages, the study of the physical properties of plutonium-activated salt reactors is attractive. This study mainly focused on the burnup performance and temperature reactivity coefficient of a small modular molten-salt reactor started with plutonium (SM-MSR-Pu). The neutron spectra,233,U production, plutonium incineration, minor actinide (MA) residues, and temperature reactivity coefficients for different fuel salt volume fractions (,VF,) and hexagon pitch (,P,) sizes were calculated to analyze the burnup behavior in the SM-SMR-Pu. Based on the comparative analysis results of the burn-up calculation, a lower ,VF, and larger ,P, size are more beneficial for improving the burnup performance. However, from a passive safety perspective, a higher fuel volume fraction and smaller hexagon pitch size are necessary to achieve a deep negative feedback coefficient. Therefore, an excellent burnup performance and a deep negative temperature feedback coefficient are incompatible, and the optimal design range is relatively narrow in the optimized design of an SM-MSR-Pu. In a comprehensive consideration,P, = 20 cm and ,VF, = 20% are considered to be relatively balanced design parameters. Based on the fuel off-line batching scheme, a 250 MWth SM-MSR-Pu can produce approximately 29.83 kg of ,233,U, incinerate 98.29 kg of plutonium, and accumulate 14.70 kg of MAs per year, and the temperature reactivity coefficient can always be lower than -4.0 pcm/K.
Molten salt fuelIncinerate plutonium233U productionTemperature reactivity coefficient
R.C. Robertson, Conceptual design study of a single-fluid molten-salt breeder reactor. Oak Ridge National Lab., Tenn. 1971.doi: 10.2172/4030941http://doi.org/10.2172/4030941
M. W.Rosenthal, P.R. Kasten, R.B. Briggs, Molten-salt reactors—history, status, and potential. Nuclear Technology 8, 107-117 (1970).
A. Nuttin, D. Heuer, A. Billebaud et al., Potential of thorium molten salt reactors detailed calculations and concept evolution with a view to large scale energy production. Prog.Nucl.Energy.46, 77-99 (2005). doi: 10.1016/j.pnucene.2004.11.001http://doi.org/10.1016/j.pnucene.2004.11.001
D. LeBlanc, Molten salt reactors: A new beginning for an old idea. Nucl. Eng. Des. 240, 1644-1656 (2010). doi: 10.1016/j.nucengdes.2009.12.033http://doi.org/10.1016/j.nucengdes.2009.12.033
M.S. Cheng, Z.M. Dai, Development of a three dimension multi-physics code for molten salt fast reactor. Nucl. Sci. Tech. 25, 010601 (2014). http://www.j.sinap.ac.cn/nst/EN/abstract/article_427.shtmlhttp://www.j.sinap.ac.cn/nst/EN/abstract/article_427.shtmldoi: 10.13538/j.1001-8042/nst.25.010601http://doi.org/10.13538/j.1001-8042/nst.25.010601
G.C. Li, Y. Zou, C.G Yu et al.,Influences of 7Li enrichment on Th–U fuel breeding for an Improved Molten Salt Fast Reactor(IMSFR). Nucl. Sci. Tech. 28, 97 (2017).doi: 10.1007/s41365-017-0250-7http://doi.org/10.1007/s41365-017-0250-7
J. Křepel, B. Hombourger, C. Fiorina et al., Fuel cycle advantages and dynamics features of liquid fueled MSR. Ann. Nucl. Energy 64, 380-397 (2014). doi: 10.1016/j.anucene.2013.08.007http://doi.org/10.1016/j.anucene.2013.08.007
W.B. Cottrell, H.E. Hungerford, J.K. Leslie et al., Operation of the aircraft reactor experiment. No. ORNL-1845 (Del.). Oak Ridge National Lab., Tenn., 1955. doi: 10.2172/4237975http://doi.org/10.2172/4237975
M. Brovchenko, J.L. Kloosterman, L. Luzzi et al., Neutronic benchmark of the molten salt fast reactor in the frame of the EVOL and MARS collaborative projects.EPJ Nuclear Sci. Technol. 1-26(2019). http://dx.doi.org/10.1051/epjn/2018052doi.org/10.1051/epjn/2018052
P.N. Haubenreich, J.R. Engel, Experience with the molten salt reactor experiment. Nucl. Appl. Tech. 8, 118-136 (1970). doi: 10.13182/nt8-2-118http://doi.org/10.13182/nt8-2-118
M. Kütt, F. Friederike, M. Englert, Plutonium disposition in the BN-800 fast reactor: an assessment of plutonium isotopics and breeding.Sci. Glob. Secur. 22, 188-208 (2014). doi: 10.1080/08929882.2014.952578http://doi.org/10.1080/08929882.2014.952578
E. Merle-Lucotte, D. Heuer, C. Le Brun et al., Fast thorium molten salt reactors started with plutonium. Proceedings of ICAPP’06. American Nuclear Society, 6132-6139 (2006).
D.Y. Cui, S.P. Xia, X.X. Li et al.,Transition towards thorium fuel cycle in a molten salt reactor by using plutonium. Nucl. Sci. Tech. 28,152 (2017)doi: 10.1007/s41365-017-0303-yhttp://doi.org/10.1007/s41365-017-0303-y.
X.C. Zhao, D.Y. Cui, X.Z. Cai et al.,Analysis of Th-U breeding capability for an accelerator-driven subcritical molten salt reactor. Nucl. Sci. Tech. 29,121 (2018). doi: 10.1007/s41365-018-0448-3http://doi.org/10.1007/s41365-018-0448-3.
D. Heuer, E. Merle-Lucotte, M. Allibert et al., Towards the thorium fuel cycle with molten salt fast reactors. Ann. Nucl. Energy 64, 421-429 (2014).doi: 10.1016/j.anucene.2013.08.002http://doi.org/10.1016/j.anucene.2013.08.002
G.C. Li, P. Cong, C.G. Yu et al., Optimization of Th-U fuel breeding based on a single-fluid double-zone thorium molten salt reactor. Prog.Nucl.Energy.108, 144-151(2018). doi: 10.1016/j.pnucene.2018.04.017http://doi.org/10.1016/j.pnucene.2018.04.017
D.T. Ingersoll, Deliberately small reactors and the second nuclear era. Prog. Nucl. Energy 51, 589-603 (2009) doi: 10.1016/j.pnucene.2009.01.003.8http://doi.org/10.1016/j.pnucene.2009.01.003.8
P. Sabharwall, E. Kim, M. Mckellar et al., Small ModularMolten Salt Reactor (SM-MSR). ASME 2011 Small Modular Reactors Symposium, 31-39 (2011).http://dx.doi.org/10.1115/SMR2011-6527doi.org/10.1115/SMR2011-6527
Y. Ma, J. Chen, X. Cai et al., Preliminary quantitative proliferation resistance assessment of small modular thorium based MSR. Atomic Energy Science and Technology, 52, 1994-2000 (2018).doi: 10.7538/yzk.2018.youxian.0162rhttp://doi.org/10.7538/yzk.2018.youxian.0162r (in Chinese)
K. Mitachi, T. Yamamoto, R. Yoshioka, Self-sustaining core design for 200 MWe molten-salt reactor with thorium-uranium fuel: FUJI-U3-(0). Proceedings of TU2007, 4-6(2007).
K. Mitachi, Y. Yamana, T. Suzuki et al., Neutronic examination on plutonium transmutation by a small molten-salt fission power station. No.IAEA-TECDOC–840.1995.
B.R. Betzler, J.J. Powers, A. Worrall et al., Two dimensional neutronic and fuel cycle analysis of the transatomic power molten salt reactor. Office of Scientific and Technical Information (OSTI), ORNL/TM- 2016/742.(2017).doi: 10.2172/1340461http://doi.org/10.2172/1340461
C.Y. Zou, C.Z Cai, C.G Yu,et al.,Transition to thorium fuel cycle for TMSR. Nucl. Eng. Des. 330, 420-428 (2018): doi: 10.1016/j.nucengdes.2018.01.033http://doi.org/10.1016/j.nucengdes.2018.01.033
C.Y. Zou, C.G. Yu, G.F. Zhu et al., Neutronic performances of small modular thorium-based molten salt reactor starting with TRUs. Nucl. Tech. 43(12), 120601 (2020). doi: 10.11889/j.0253-3219.2020.hjs.43.120601http://doi.org/10.11889/j.0253-3219.2020.hjs.43.120601 (in Chinese)
C.Y. Zou, X.Z Cai, D.Z. Jiang et al.,Optimization of temperature coefficient and breeding ratio for a graphite moderated molten salt reactor. Nucl.Eng.Des. 281, 114-120 (2015)doi: 10.1016/j.nucengdes.2014.11.022http://doi.org/10.1016/j.nucengdes.2014.11.022
C. Yu, C. Zou, J. Wu et al., Development and verification of molten salt reactor refueling and reprocessing system analysis code based on SCALE. Atomic Energy Science and Technology,52, 12(2018).doi: 10.7538/yzk.2018youxian.0123http://doi.org/10.7538/yzk.2018youxian.0123 (in Chinese).
ORNL, CSAS6:control module for enhanced criticality safety analysis with KENOVI. ORNL/TM-2005/39, Version 6.1.2011.
M.D. DeHART, Triton:a two dimensional transport and depletion module for characterization of spent nuclear fuel. ORNL/TM-2005/39, Version 6.1.2011.
Scale: a comprehensive modeling and simulation suite for nuclear safety analysis and design. ORNL/TM-2005/39, Version6.1.2011.
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution