1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2.China Nuclear Power Engineering Corporation, Beijing 100840, China
* lizeguang@mail.tsinghua.edu.cn
Scan for full text
Peng-Fei Shen, Xiao-Dong Huo, Ze-Guang Li, et al. Mesh-free Semi-quantitative Variance Underestimation Elimination Method in Monte Caro algorithm. [J]. Nuclear Science and Techniques 34(1):14(2023)
Peng-Fei Shen, Xiao-Dong Huo, Ze-Guang Li, et al. Mesh-free Semi-quantitative Variance Underestimation Elimination Method in Monte Caro algorithm. [J]. Nuclear Science and Techniques 34(1):14(2023) DOI: 10.1007/s41365-022-01156-1.
The inter-cycle correlation of fission source distributions (FSDs) in the Monte Carlo Power Iteration process results in variance underestimation of tallied physical quantities, especially in large local tallies. This study provides a mesh-free Semi-quantitative Variance Underestimation Elimination (SeVUE) method to obtain a credible confidence interval for the tallied results. This method comprises two procedures: Estimation and Elimination. The FSD inter-cycle correlation length is estimated in the Estimation procedure using the Sliced Wasserstein distance algorithm. The batch method was then used in the Elimination procedure. The FSD inter-cycle correlation length was proved to be the optimum batch length to eliminate the variance underestimation problem. We exemplified this method using the OECD sphere array model and 3D PWR BEAVRS model. The results showed that the average variance underestimation ratios of local tallies declined from 37% and 87% to within ±5% in these models.
Monte Carlo algorithmPower Iteration processInter-cycle correlationVariance UnderestimationSliced Wasserstein distance
D.B. MacMillan, Monte Carlo confidence limits for iterated-source calculations. Nucl. Sci. Eng. 50, 73-75 (1973). doi: 10.13182/NSE73-A22590http://doi.org/10.13182/NSE73-A22590
P. Turinski, Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steadystate and transient problems. North Carolina State Univ. Report. (1994).
H. J. Shim, C. H. Kim, Real variance estimation using an intercycle fission source correlation for Monte Carlo eigenvalue calculations. Nuclear science and engineering, 162(1), 98-108 (2009). doi: 10.13182/NSE09-2http://doi.org/10.13182/NSE09-2
H. J. Park, H. C. Lee, H. J. Shim, J. Y. Cho, Real variance analysis of Monte Carlo eigenvalue calculation by McCARD for BEAVRS benchmark. Annals of Nuclear Energy 90, 205-211 (2016). doi: 10.1016/j.anucene.2015.12.009http://doi.org/10.1016/j.anucene.2015.12.009
L.J. Pan, R.H. Wang, S. Jiang, Monte Carlo fission matrix acceleration method with adaptive mesh. Nucl. Sci. Tech. 26, 050603 (2015). doi: 10.13538/j.1001-8042/nst.26.050603http://doi.org/10.13538/j.1001-8042/nst.26.050603
Q.Q. Pan, T.F. Zhang, X.J. Liu, et al., SP3-coupled global variance reduction method based on RMC code. Nucl. Sci. Tech. 32, 122 (2021). doi: 10.1007/s41365-021-00973-0http://doi.org/10.1007/s41365-021-00973-0
X.-L. Pan, J.-Q. Wang, R. Yuan et al., Biasing transition rate method based on direct MC simulation for probabilistic safety assessment. Nucl. Sci. Tech. 28, 91 (2017). doi: 10.1007/s41365-017-0255-2http://doi.org/10.1007/s41365-017-0255-2
X.-C. Nie, J. Li, S.-L. Liu et al., Global variance reduction method for global Monte Carlo particle transport simulations of CFETR. Nucl. Sci. Tech. 28, 115 (2017). doi: 10.1007/s41365-017-0270-3http://doi.org/10.1007/s41365-017-0270-3
Z.G. Li, K. Wang, Y.C. Guo et al., Forced propagation method for Monte Carlo fission source convergence acceleration in the RMC. Nucl. Sci. Tech. 32, 27 (2021). doi: 10.1007/s41365-021-00868-0http://doi.org/10.1007/s41365-021-00868-0
R.J. Brissenden, A.R. Garlick, Biases in the estimation of Keff and its error by Monte Carlo methods. Ann. Nucl. Energy 13, 63-83 (1986). doi: 10.1016/0306-4549(86)90095-2http://doi.org/10.1016/0306-4549(86)90095-2
B. Herman, B. Forget, K. Smith, Analysis of tally correlation in large light water reactors. PHYSOR 2014, Kyoto, Japan
J. Park, P. Zhang, H.C. Lee et al., Performance evaluation of CMFD on inter-cycle correlation reduction of Monte Carlo simulation. Computer Phys. Communications 235, 111-119 (2019). doi: 10.1016/j.cpc.2018.09.014http://doi.org/10.1016/j.cpc.2018.09.014
E. M. Gelbard, R. Prael, Computation of standard deviations in Eigenvalue calculations. Prog. Nucl. Energy 24(1), 237-241 (1990). doi: 10.1016/0149-1970(90)90041-3http://doi.org/10.1016/0149-1970(90)90041-3
L. Deng, G. Li, B.Y. Zhang et al., A high fidelity general purpose 3-D Monte Carlo particle transport program JMCT3.0. Nucl. Sci. Tech. 33, 108 (2022). doi: 10.1007/s41365-022-01092-0http://doi.org/10.1007/s41365-022-01092-0
T. Ueki, Standard deviation of local tallies in global monte carlo calculation of nuclear reactor core. Journal of nuclear science and technology 47 (8), 739-753 (2010). doi: 10.3327/jnst.47.739http://doi.org/10.3327/jnst.47.739
T.M. Sutton, Application of a discretized phase space approach to the analysis of Monte Carlo uncertainties. In: ANS MC2015 – Joint International Conference Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, no. Mc, Nashville, TN, 2015, pp. 1–17.
T. Ueki, Fractal dimension analysis for run length diagnosis of Monte Carlo criticality calculation. Journal of Nuclear Science and Technology 53 (3), 312-322 (2016). doi: 10.1080/00223131.2015.1039620http://doi.org/10.1080/00223131.2015.1039620
J. Miao, B. Forget, K. Smith, Predicting correlation coefficients for Monte Carlo eigenvalue simulations with multitype branching process. Annals of Nuclear Energy 112, 307-321 (2018). doi: 10.1016/j.anucene.2017.10.014http://doi.org/10.1016/j.anucene.2017.10.014
J. Miao, B. Forget, K. Smith, Correlation diagnosis method for heterogeneous Monte Carlo eigenvalue simulations based on a diffusion approximation. Annals of Nuclear Energy 130, 301-318 (2019). doi: 10.1016/j.anucene.2019.02.048http://doi.org/10.1016/j.anucene.2019.02.048
K. Wang, Z.G. Li, D. She et al., RMC–a monte carlo code for reactor core analysis. Ann. Nucl. Energy 82, 121-129 (2015). doi: 10.1016/j.anucene.2014.08.048http://doi.org/10.1016/j.anucene.2014.08.048
M. Arjovsky, S. Chintala, L. Bottou, Wasserstein gan. 2017. arXiv:1701.07875
X. Guo, Z. Li, S. Huang, et al., Convergence diagnostics for Monte Carlo fission source distributions using the Wasserstein distance measure. Nuclear Engineering and Design 389, 111675 (2022)
P. Shen, S. Jiang, Y. Hu et al., Research on the correlations of fission source distribution in the Monte Carlo algorithm using mathematical tools. Proceedings of 29th International Conference on Nuclear Engineering(ICONE 29) (2022)
P. Shen, X. Huo, S. Huang et al., Capturing and utilizing the random feature in Monte Carlo fission source distributions. Ann. Nucl. Energy 180, 109468 (2022).
Q. Pan, J. Rao, S. Huang et al., Improved adaptive variance reduction algorithm based on RMC code for deep penetration problems. Ann. Nucl. Energy 137, 107113 (2020). doi: 10.1016/j.anucene.2019.107113http://doi.org/10.1016/j.anucene.2019.107113
P. Shen, X. Guo, K. Li et al., Research on global neighbor list method in Monte Carlo code RMC. Ann. Nucl. Energy 167, 108861 (2022). doi: 10.1016/j.anucene.2021.108861http://doi.org/10.1016/j.anucene.2021.108861
K. Wang, S. Liu, Z. Li et al., Analysis of beavrs two-cycle benchmark using rmc based on full core detailed model. Prog. Nucl. Energy 98, 301-312 (2017). doi: 10.1016/j.pnucene.2017.04.009http://doi.org/10.1016/j.pnucene.2017.04.009
Y. Guo, Z. Li, S. Huang et al., A new neutronics-thermal-mechanics multi-physics coupling method for heat pipe cooled reactor based on RMC and OpenFOAM. Prog. Nucl. Energy 139, 103842 (2021). doi: 10.1016/j.pnucene.2021.103842http://doi.org/10.1016/j.pnucene.2021.103842
R. Blomquist, A. Nouri, The OECD/NEA source convergence benchmark program. Transactions of the American Nuclear Society 87, 143-145 (2002).
N. Horelik, B. Herman, B. Forget et al., Benchmark for evaluation and validation of reactor simulations (beavrs), v1.0.1, in: Proc. Int. Conf. Mathematics and Computational Methods Applied to Nuc. Sci. & Eng, pp. 63–68 (2013).
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution