1.School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
2.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3.RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
4.College of Electrical, Power and Energy Engineering, Yangzhou University, Yangzhou 225009, China
5.School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
† chenpenghui@yzu.edu.cn
‡ fengzhq@scut.edu.cn
Scan for full text
Peng-Hui Chen, Hao Wu, Zu-Xing Yang, et al. Prediction of synthesis cross-sections of new moscovium isotopes in fusion-evaporation reactions. [J]. Nuclear Science and Techniques 34(1):7(2023)
Peng-Hui Chen, Hao Wu, Zu-Xing Yang, et al. Prediction of synthesis cross-sections of new moscovium isotopes in fusion-evaporation reactions. [J]. Nuclear Science and Techniques 34(1):7(2023) DOI: 10.1007/s41365-022-01157-0.
In the framework of the dinuclear system model, the synthesis mechanism of the superheavy nuclides with atomic numbers ,Z,=112, 114, 115 in the reactions of projectiles ,40,48,Ca bombarding on targets ,238,U,242,Pu, and ,243,Am within a wide interval of incident energy has been investigated systematically. Based on the available experimental excitation functions, the dependence of calculated synthesis cross-sections on collision orientations has been studied thoroughly. The total kinetic energy (TKE) of these collisions with fixed collision orientation shows orientation dependence, which can be used to predict the tendency of kinetic energy diffusion. The TKE is dependent on incident energies, as discussed in this paper. We applied the method based on the Coulomb barrier distribution function in our calculations. This allowed us to approximately consider all the collision orientations from tip-tip to side-side. The calculations of excitation functions of ,48,Ca + ,238,U,48,Ca + ,242,Pu, and ,48,Ca + ,243,Am are in good agreement with the available experimental data. The isospin effect of projectiles on production cross-sections of moscovium isotopes and the influence of the entrance channel effect on the synthesis cross-sections of superheavy nuclei are also discussed in this paper. The synthesis cross-section of new moscovium isotopes ,278-286,Mc was predicted to be as large as hundreds of pb in the fusion-evaporation reactions of ,35,37,Cl + ,248,Cf,38,40,Ar + ,247,Bk,39,41,K + ,247,Cm,40,42,44,46,Ca + ,243,Am,45,Sc + ,244,Pu, and ,46,48,50,Ti + ,237,Np,51,V + ,238,U at some typical excitation energies.
Dinuclear system modelSuperheavy nucleiComplete fusion reactionsProduction cross-section
Y.T. Oganessian, V.K. Utyonkov, Super-heavy element research. Reports on Progress in Physics 78, 036301 (2015). doi: 10.1088/0034-4885/78/3/036301http://doi.org/10.1088/0034-4885/78/3/036301
M. Thoennessen, Discovery of isotopes of elements with Z≥100. Atomic Data and Nuclear Data Tables 99, 312-344 (2013). doi: 10.1016/j.adt.2012.03.003http://doi.org/10.1016/j.adt.2012.03.003
G. Heinlein, K. Bächmann, J. Rudolph, in Superheavy Elements, Model experiments with short-lived nuclides for the investigation of the quantitative chemical behaviour of new elements. (Pergamon, 1978), pp. 407–414 doi: 10.1016/B978-0-08-022946-1.50051-7http://doi.org/10.1016/B978-0-08-022946-1.50051-7
A. Ghiorso, M. Nurmia, K. Eskola, et al., 261rf; new isotope of element 104. Physics Letters B 32, 95-98 (1970). doi: 10.1016/0370-2693(70)90595-2http://doi.org/10.1016/0370-2693(70)90595-2
G.N. Flerov, Y.T. Oganesyan, Y.V. Lobanov, et al., Synthesis of element 105. Sov. At. Energy 29, 967 (1970).
A. Ghiorso, M. Nurmia, K. Eskola, et al., New element hahnium, atomic number 105. Phys. Rev. Lett. 24, 1498-1503 (1970). doi: 10.1103/PhysRevLett.24.1498http://doi.org/10.1103/PhysRevLett.24.1498
A. Ghiorso, J.M. Nitschke, J.R. Alonso, et al., Element 106. Phys. Rev. Lett. 33, 1490-1493 (1974). doi: 10.1103/PhysRevLett.33.1490http://doi.org/10.1103/PhysRevLett.33.1490
P.A. Ellison, K.E. Gregorich, J.S. Berryman, et al., New superheavy element isotopes: 242Pu(48 Ca, 5n)285114. Phys. Rev. Lett. 105, 182701 (2010). doi: 10.1103/PhysRevLett.105.182701http://doi.org/10.1103/PhysRevLett.105.182701
Y.T. Oganessian, V.K. Utyonkoy, Y.V. Lobanov, et al., Experiments on the synthesis of element 115 in the reaction 243Am(48 Ca, xn)291-x115. Phys. Rev. C 69, 021601 (2004). doi: 10.1103/PhysRevC.69.021601http://doi.org/10.1103/PhysRevC.69.021601
Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, et al., Measurements of cross sections for the fusion-evaporation reactions 244 Pu(48Ca, xn)292-x 114 and 245Cm(48Ca, xn)293-x116. Phys. Rev. C 69, 054607 (2004). doi: 10.1103/PhysRevC.69.054607http://doi.org/10.1103/PhysRevC.69.054607
Y.T. Oganessian, F.S. Abdullin, P.D. Bailey, et al., Synthesis of a new element with atomic number Z=117. Phys. Rev. Lett. 104, 142502 (2010). doi: 10.1103/PhysRevLett.104.142502http://doi.org/10.1103/PhysRevLett.104.142502
Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, et al., Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions. Phys. Rev. C 74, 044602 (2006). doi: 10.1103/PhysRevC.74.044602http://doi.org/10.1103/PhysRevC.74.044602
Y.T. Oganesyan, Y.P. Tretyakov, A.S. Ilinov, et al., Synthesis of neutron-deficient isotopes of fermium, kurchatovium, and element 106. JETP Lett. (USSR) 20, 265 (1975).
G. Münzenberg, S. Hofmann, F.P. Heßberger, et al., Identification of element 107 by α correlation chains. Zeitschrift fur Physik A Hadrons and Nuclei 300, 107-108 (1981). doi: 10.1007/BF01412623http://doi.org/10.1007/BF01412623
G. Münzenberg, P. Armbruster, H. Folger, et al., The identification of element 108. Zeitschrift für Physik A Atoms and Nuclei 317, 235-236 (1984). doi: 10.1007/BF01421260http://doi.org/10.1007/BF01421260
G. Münzenberg, P. Armbruster, F.P. Hessberger, et al., Observation of one correlated α-decay in the reaction58fe on209bi →267109. Zeitschrift für Physik A Atoms and Nuclei 309, 89-90 (1982).
S. Hofmann, V. Ninov, F. Heßberger, et al., Production and decay of269110. Zeitschrift für Physik A Hadrons and Nuclei 350, 277-280 (1995). doi: 10.1007/BF01291181http://doi.org/10.1007/BF01291181
S. Hofmann, V. Ninov, F. Heßberger, et al., The new element 111. Zeitschrift für Physik A Hadrons and Nuclei 350, 281-282 (1995). doi: 10.1007/BF01291182http://doi.org/10.1007/BF01291182
JOUR, S. Hofmann, V. Ninov, et al., The new element 112. Zeitschrift für Physik A Hadrons and Nuclei 354,. doi: 10.1007/BF02769517http://doi.org/10.1007/BF02769517
K. Morita, K. Morimoto, D. Kaji, et al., Experiment on the synthesis of element 113 in the reaction 209bi(70zn,n)278113. Journal of the Physical Society of Japan 73, 2593-2596 (2004). doi: 10.1143/JPSJ.73.2593http://doi.org/10.1143/JPSJ.73.2593
Z. Gan, Z. Qin, H. Fan, et al., A new alpha-particle - emitting isotope 259Db. European Physical Journal A 10, 21-25 (2001). doi: 10.1007/s100500170140http://doi.org/10.1007/s100500170140
Q. Z., W.X. L., D.H. J., et al., Alpha decay properties of 266Bh. Nuclear Physics Review 23, 404 (2006). doi: 10.11804/NuclPhysRev.23.04.404http://doi.org/10.11804/NuclPhysRev.23.04.404
Z.Y. ZHANG, Z.G. GAN, L. MA, et al., Observation of the superheavy nuclide 271Ds. Chin. Phys. Lett. 58,. doi: 10.1088/0256-307X/29/1/012502http://doi.org/10.1088/0256-307X/29/1/012502
F.P. Heßberger, S. Hofmann, V. Ninov, et al., Spontaneous fission and alpha-decay properties of neutron deficient isotopes 257-253104 and 258106. Zeitschrift für Physik A Hadrons and Nuclei 359, 415-425 (1997). doi: 10.1007/s002180050422http://doi.org/10.1007/s002180050422
U. Tippawan, S. Pomp, A. Ataç, et al., Light-ion production in the interaction of 96 MeV neutrons with silicon. Phys. Rev. C 69, 064609 (2004). doi: 10.1103/PhysRevC.69.064609http://doi.org/10.1103/PhysRevC.69.064609
JOUR, F. Heßberger, S. Hofmann, et al., Decay properties of neutron-deficient isotopes 256, 257Db, 255Rf, 252, 253Lr. The European Physical Journal A - Hadrons and Nuclei. http://dx.doi.org/10.1007/s100500170039 doi:10.1007/s100500170039
S.L. Nelson, K.E. Gregorich, I. Dragojević, et al., Lightest isotope of bh produced via the 209Bi(52Cr, n)260 reaction. Phys. Rev. Lett. 100, 022501 (2008). doi: 10.1103/PhysRevLett.100.022501http://doi.org/10.1103/PhysRevLett.100.022501
I. Dragojević, K.E. Gregorich, C.E. Düllmann, et al., New isotope 263Hs. Phys. Rev. C 79, 011602 (2009). doi: 10.1103/PhysRevC.79.011602http://doi.org/10.1103/PhysRevC.79.011602
C.E. Düllmann, M. Schädel, A. Yakushev, et al., Production and decay of element 114: High cross sections and the new nucleus 277Hs. Phys. Rev. Lett. 104, 252701 (2010). doi: 10.1103/PhysRevLett.104.252701http://doi.org/10.1103/PhysRevLett.104.252701
G. Münzenberg, P. Armbruster, F. Heßberger, et al., Observation of one correlated α-decay in the reaction 58Fe on 209Bi→ 267109. Zeitschrift für Physik A Hadrons and Nuclei 309, 89-90 (1982).
A. Ghiorso, D. Lee, L.P. Somerville, et al., Evidence for the possible synthesis of element 110 produced by the 59Co+209Bi reaction. Phys. Rev. C 51, R2293-R2297 (1995). doi: 10.1103/PhysRevC.51.R2293http://doi.org/10.1103/PhysRevC.51.R2293
JOUR, S. Hofmann, V. Ninov, et al., The new element 111. Zeitschrift für Physik A Hadrons and Nuclei 350,. doi: 10.1007/BF01291182http://doi.org/10.1007/BF01291182
K. Morita, K. Morimoto, D. Kaji, et al., Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn,n)278113. Journal of the Physical Society of Japan 73, 2593-2596 (2004). doi: 10.1143/jpsj.73.2593http://doi.org/10.1143/jpsj.73.2593
V.V. Volkov, Deep inelastic transfer reactions — the new type of reactions between complex nuclei. Phys. Rep. 44, 93-157 (1978). doi: 10.1016/0370-1573(78)90200-4http://doi.org/10.1016/0370-1573(78)90200-4
Z. Gan, W. Huang, Z. Zhang, et al., Results and perspectives for study of heavy and super-heavy nuclei and elements at IMP/CAS. The European Physical Journal A 58,. doi: 10.1140/epja/s10050-022-00811-whttp://doi.org/10.1140/epja/s10050-022-00811-w
S. Heinz, H. Devaraja, Nucleosynthesis in multinucleon transfer reactions. The European Physical Journal A 58,. doi: 10.1140/epja/s10050-022-00771-1http://doi.org/10.1140/epja/s10050-022-00771-1
M. Block, F. Giacoppo, F.P. Heßberger, et al., Recent progress in experiments on the heaviest nuclides at SHIP. Nuovo Cimento Rivista Serie 45, 279-323 (2022). doi: 10.1007/s40766-022-00030-5http://doi.org/10.1007/s40766-022-00030-5
B. Sergey, S. Dmitriev, N. Kazarinov, et al., She factory: Cyclotron facility for super heavy elements research. 2020. doi: 10.18429/JACoW-Cyclotrons2019-THC01http://doi.org/10.18429/JACoW-Cyclotrons2019-THC01
G. Adamyan, N. Antonenko, A. Diaz-Torres, et al., How to extend the chart of nuclides? European Physical Journal A 56, 47-1 (2020). doi: 10.1140/epja/s10050-020-00046-7http://doi.org/10.1140/epja/s10050-020-00046-7
D. Kaji, K. Morimoto, A. Yoneda, et al., Target for the heaviest element production at riken. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 590, 198-203 (2008). Toward the Realization of Target and Stripper Foil Technologies for High-Power Proton and Radioactive Ion Accelerators. doi: 10.1016/j.nima.2008.02.090http://doi.org/10.1016/j.nima.2008.02.090
H. Haba, A new period in superheavy-element hunting. Nature Chemistry 11, 10-13 (2019). doi: 10.1038/s41557-018-0191-8http://doi.org/10.1038/s41557-018-0191-8
T. Tanaka, K. Morita, K. Morimoto, et al., Study of quasielastic barrier distributions as a step towards the synthesis of superheavy elements with hot fusion reactions. Phys. Rev. Lett. 124, 052502 (2020). doi: 10.1103/PhysRevLett.124.052502http://doi.org/10.1103/PhysRevLett.124.052502
J.L. Pore, J.M. Gates, R. Orford, et al., Identification of the new isotope 244Md. Phys. Rev. Lett. 124, 252502 (2020). doi: 10.1103/PhysRevLett.124.252502http://doi.org/10.1103/PhysRevLett.124.252502
L. Guo, C. Simenel, L. Shi, et al., The role of tensor force in heavy-ion fusion dynamics. Physics Letters B 782, 401-405 (2018). doi: 10.1016/j.physletb.2018.05.066http://doi.org/10.1016/j.physletb.2018.05.066
K. Sekizawa, Tdhf theory and its extensions for the multinucleon transfer reaction: A mini review. Frontiers in Physics 7,. doi: 10.3389/fphy.2019.00020http://doi.org/10.3389/fphy.2019.00020
J. Maruhn, P.G. Reinhard, P. Stevenson, et al., The tdhf code sky3d. Computer Physics Communications 185, 2195-2216 (2014). doi: 10.1016/j.cpc.2014.04.008http://doi.org/10.1016/j.cpc.2014.04.008
N. Wang, Z. Li, X. Wu, Improved quantum molecular dynamics model and its applications to fusion reaction near barrier. Phys. Rev. C 65, 064608 (2002). doi: 10.1103/PhysRevC.65.064608http://doi.org/10.1103/PhysRevC.65.064608
X. Jiang, S. Yan, J.A. Maruhn, Dynamics of energy dissipation in heavy-ion fusion reactions. Phys. Rev. C 88, 044611 (2013). doi: 10.1103/PhysRevC.88.044611http://doi.org/10.1103/PhysRevC.88.044611
K. Zhao, Z. Li, X. Wu, et al., Production probability of superheavy fragments at various initial deformations and orientations in the 238U +238U reaction. Phys. Rev. C 88, 044605 (2013). doi: 10.1103/PhysRevC.88.044605http://doi.org/10.1103/PhysRevC.88.044605
A.V. Karpov, V.V. Saiko, Modeling near-barrier collisions of heavy ions based on a langevin-type approach. Phys. Rev. C 96, 024618 (2017). doi: 10.1103/PhysRevC.96.024618http://doi.org/10.1103/PhysRevC.96.024618
V.I. Zagrebaev, A.V. Karpov, W. Greiner, Possibilities for synthesis of new isotopes of superheavy elements in fusion reactions. Phys. Rev. C 85, 014608 (2012). doi: 10.1103/PhysRevC.85.014608http://doi.org/10.1103/PhysRevC.85.014608
Z.Q. Feng, G.M. Jin, F. Fu, et al., Production cross sections of superheavy nuclei based on dinuclear system model. Nuclear Physics A 771, 50-67 (2006). doi: 10.1016/j.nuclphysa.2006.03.002http://doi.org/10.1016/j.nuclphysa.2006.03.002
X.J. Bao, Y. Gao, J.Q. Li, et al., Influence of the nuclear dynamical deformation on production cross sections of superheavy nuclei. Phys. Rev. C 91, 011603 (2015). doi: 10.1103/PhysRevC.91.011603http://doi.org/10.1103/PhysRevC.91.011603
L. Zhu, W.J. Xie, F.S. Zhang, Production cross sections of superheavy elements Z=119 and 120 in hot fusion reactions. Phys. Rev. C 89, 024615 (2014). doi: 10.1103/PhysRevC.89.024615http://doi.org/10.1103/PhysRevC.89.024615
G. Adamyan, N. Antonenko, A. Diaz-Torres, et al., How to extend the chart of nuclides? European Physical Journal A 56, 47-1 (2020). doi: 10.1140/epja/s10050-020-00046-7http://doi.org/10.1140/epja/s10050-020-00046-7
Z.Q. Feng, g.m. no, H. Ming-Hui, et al., Possible way to synthesize superheavy element Z=117. Chinese Physics Letters 24,. doi: 10.1088/0256-307X/24/9/024http://doi.org/10.1088/0256-307X/24/9/024
Z.Q. Feng, G.M. Jin, J.Q. Li, Influence of entrance channels on the formation of superheavy nuclei in massive fusion reactions. Nuclear Physics A 836, 82-90 (2010). doi: 10.1016/j.nuclphysa.2010.01.244http://doi.org/10.1016/j.nuclphysa.2010.01.244
K.X. Cheng, J. Pu, Y.T. Wang, et al., Non-frozen process of heavy-ion fusion reactions at deep sub-barrier energies. Nuclear Science and Techniques 33, 132 (2022). doi: 10.1007/s41365-022-01114-xhttp://doi.org/10.1007/s41365-022-01114-x
F. Niu, P.H. Chen, Z.Q. Feng, Systematics on production of superheavy nuclei Z = 119-122 in fusion-evaporation reactions. Nuclear Science and Techniques 32, 103 (2021). doi: 10.1007/s41365-021-00946-3http://doi.org/10.1007/s41365-021-00946-3
M.T. Jin, S.Y. Xu, G.M. Yang, et al., Yield of long-lived fission product transmutation using proton-, deuteron-, and alpha particle-induced spallation. Nuclear Science and Techniques 32, 96 (2021). doi: 10.1007/s41365-021-00933-8http://doi.org/10.1007/s41365-021-00933-8
Y.Q. Xin, N.N. Ma, J.G. Deng, et al., Properties of Z=114 super-heavy nuclei. Nuclear Science and Techniques 32, 55 (2021). doi: 10.1007/s41365-021-00899-7http://doi.org/10.1007/s41365-021-00899-7
X.B. Yu, L. Zhu, Z.H. Wu, et al., Predictions for production of superheavy nuclei with Z = 105-112 in hot fusion reactions. Nuclear Science and Techniques 29, 154 (2018). doi: 10.1007/s41365-018-0501-2http://doi.org/10.1007/s41365-018-0501-2
Z.Q. Feng, G.M. Jin, J.Q. Li, Production of new superheavy Z=108-114 nuclei with 238U, 244Pu, and 248,250Cm targets. Phys. Rev. C 80, 057601 (2009). doi: 10.1103/PhysRevC.80.057601http://doi.org/10.1103/PhysRevC.80.057601
Z.Q. Feng, G.M. Jin, J.Q. Li, et al., Formation of superheavy nuclei in cold fusion reactions. Phys. Rev. C 76, 044606 (2007). doi: 10.1103/PhysRevC.76.044606http://doi.org/10.1103/PhysRevC.76.044606
G.G. Adamian, N.V. Antonenko, R.V. Jolos, et al., Effective nucleus-nucleus potential for calculation of potential energy of a dinuclear system. International Journal of Modern Physics E 05, 191216 (1996).
D.L. Hill, J.A. Wheeler, Nuclear constitution and the interpretation of fission phenomena. Phys. Rev. 89, 1102-1145 (1953). doi: 10.1103/PhysRev.89.1102http://doi.org/10.1103/PhysRev.89.1102
V.I. Zagrebaev, Y. Aritomo, M.G. Itkis, et al., Synthesis of superheavy nuclei: How accurately can we describe it and calculate the cross sections? Phys. Rev. C 65, 014607 (2001). doi: 10.1103/PhysRevC.65.014607http://doi.org/10.1103/PhysRevC.65.014607
W.D. Myers, W.J. Swiatecki, Nuclear masses and deformations. Nuclear Physics 81, 1-60 (1966). doi: 10.1016/0029-5582(66)90639-0http://doi.org/10.1016/0029-5582(66)90639-0
C.Y. Wong, Interaction barrier in charged-particle nuclear reactions. Phys. Rev. Lett. 31, 766-769 (1973). doi: 10.1103/PhysRevLett.31.766http://doi.org/10.1103/PhysRevLett.31.766
Z.Q. Feng, G.M. Jin, J.Q. Li, et al., Production of heavy and superheavy nuclei in massive fusion reactions. Nuclear Physics A 816, 33-51 (2009). doi: 10.1016/j.nuclphysa.2008.11.003http://doi.org/10.1016/j.nuclphysa.2008.11.003
J.Q. Li, G. Wolschin, Distribution of the dissipated angular momentum in heavy-ion collisions. Phys. Rev. C 27, 590-601 (1983). doi: 10.1103/PhysRevC.27.590http://doi.org/10.1103/PhysRevC.27.590
J. Li, X. Tang, G. Wolschin, Anticorrelated angular-momentum distributions in heavy-ion collisions. Physics Letters B 105, 107-110 (1981). doi: 10.1016/0370-2693(81)91000-5http://doi.org/10.1016/0370-2693(81)91000-5
G.G. Adamian, N.V. Antonenko, W. Scheid, Characteristics of quasifission products within the dinuclear system model. Phys. Rev. C 68, 034601 (2003). doi: 10.1103/PhysRevC.68.034601http://doi.org/10.1103/PhysRevC.68.034601
P. Grangé, L. Jun-Qing, H.A. Weidenmüller, Induced nuclear fission viewed as a diffusion process: Transients. Phys. Rev. C 27, 2063-2077 (1983). doi: 10.1103/PhysRevC.27.2063http://doi.org/10.1103/PhysRevC.27.2063
P.H. Chen, Z.Q. Feng, J.Q. Li, et al., A statistical approach to describe highly excited heavy and superheavy nuclei. Chinese Physics C 40, 091002 (2016). doi: 10.1088/1674-1137/40/9/091002http://doi.org/10.1088/1674-1137/40/9/091002
A.S. Zubov, G.G. Adamian, N.V. Antonenko, et al., Competition between evaporation channels in neutron-deficient nuclei. Phys. Rev. C 68, 014616 (2003). doi: 10.1103/PhysRevC.68.014616http://doi.org/10.1103/PhysRevC.68.014616
A. Zubov, G.G. Adamyan, N. Antonenko, et al., Survival probabilities of superheavy nuclei based on recent predictions of nuclear properties. Eur. Phys. J. A 23, 249-256 (2005). doi: 10.1140/epja/i2004-10089-5http://doi.org/10.1140/epja/i2004-10089-5
P. Moller, J. Nix, W. Myers, et al., Nuclear ground-state masses and deformations. Atomic Data and Nuclear Data Tables 59, 185-381 (1995). doi: 10.1006/adnd.1995.1002http://doi.org/10.1006/adnd.1995.1002
Y.T. Oganessian, V.K. Utyonkov, D. Ibadullayev, et al., Investigation of 48Ca-induced reactions with 242Pu and 238U targets at the JINR superheavy element factory. Phys. Rev. C 106, 024612 (2022). doi: 10.1103/PhysRevC.106.024612http://doi.org/10.1103/PhysRevC.106.024612
Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, et al., Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca. Phys. Rev. C 70, 064609 (2004). doi: 10.1103/PhysRevC.70.064609http://doi.org/10.1103/PhysRevC.70.064609
S. Hofmann, D. Ackermann, S. Antalic, et al., The reaction 48Ca + 238U → 286112* studied at the GSI-SHIP. European Physical Journal A 32, 251-260 (2007). doi: 10.1140/epja/i2007-10373-xhttp://doi.org/10.1140/epja/i2007-10373-x
D. Kaji, K. Morimoto, H. Haba, et al., Decay measurement of 283Cn produced in the 238U(48Ca,3n) reaction using GARIS-II. Journal of the Physical Society of Japan 86, 085001 (2017). doi: 10.7566/JPSJ.86.085001http://doi.org/10.7566/JPSJ.86.085001
Y.T. Oganessian, F.S. Abdullin, S.N. Dmitriev, et al., Investigation of the 243Am+48Ca reaction products previously observed in the experiments on elements 113, 115, and 117. Phys. Rev. C 87, 014302 (2013). doi: 10.1103/PhysRevC.87.014302http://doi.org/10.1103/PhysRevC.87.014302
Y.T. Oganessian, F.S. Abdullin, S.N. Dmitriev, et al., New insights into the 243Am+48Ca reaction products previously observed in the experiments on elements 113, 115, and 117. Phys. Rev. Lett. 108, 022502 (2012). doi: 10.1103/PhysRevLett.108.022502http://doi.org/10.1103/PhysRevLett.108.022502
Y.T. Oganessian, V.K. Utyonkov, S.N. Dmitriev, et al., Synthesis of elements 115 and 113 in the reaction 243Am+48Ca. Phys. Rev. C 72, 034611 (2005). doi: 10.1103/PhysRevC.72.034611http://doi.org/10.1103/PhysRevC.72.034611
L. Stavsetra, K.E. Gregorich, J. Dvorak, et al., Independent verification of element 114 production in the 48Ca+242Pu reaction. Phys. Rev. Lett. 103, 132502 (2009). doi: 10.1103/PhysRevLett.103.132502http://doi.org/10.1103/PhysRevLett.103.132502
I.I. Gontchar, D.J. Hinde, M. Dasgupta, et al., Double folding nucleus-nucleus potential applied to heavy-ion fusion reactions. Zhangjiang Laboratory, Shanghai 201210, ChinaPhys. Rev. C 69, 024610 (2004). doi: 10.1103/PhysRevC.69.024610http://doi.org/10.1103/PhysRevC.69.024610
0
Views
4
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution