1.Institute of New Energy, Hexi University, Zhangye 734000, China
2.School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000, China
3.National Institute of Metrology, Beijing 100029, China
4.Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
5.National Institute for Radiological Protection, China CDC, Beijing 100088, China
* luojh71@163.com
Scan for full text
Jun-Hua Luo, Jun-Cheng Liang, Li Jiang, et al. Measurement of 134Xe(n,2n)133m,gXe reaction cross-sections in 14-MeV region with detailed uncertainty quantification. [J]. Nuclear Science and Techniques 34(1):4(2023)
Jun-Hua Luo, Jun-Cheng Liang, Li Jiang, et al. Measurement of 134Xe(n,2n)133m,gXe reaction cross-sections in 14-MeV region with detailed uncertainty quantification. [J]. Nuclear Science and Techniques 34(1):4(2023) DOI: 10.1007/s41365-022-01158-z.
A lead-shielded HPGe detector and offline γ–ray spectra of the residual product were used to measure the cross-section (CS) and ratios of isomeric CS (σ,m,/σ,g,) in ,134,Xe(n,2n),133m,g,Xe reactions at different energies (13.5 MeV, 13.8 MeV, 14.1 MeV, 14.4 MeV, 14.8 MeV) relative to the ,93,Nb(n,2n),92m,Nb reaction CS. The target was high-purity natural Xe gas under high pressure. The T(d,n),4,He reaction produces neutrons. TALYS code (version 1.95) for nuclear reactions was used for calculations, with default parameters and nuclear level density models. The uncertainties in the measured CS data were thoroughly analyzed using the covariance analysis method. The results were compared with theoretical values, evaluation data, and previous experimental findings. CS data of the ,134,Xe(n,2n),133m,Xe and, 134,Xe(n,2n),133g,Xe reactions and the corresponding isomeric CS ratios at 13.5 MeV, 13.8 MeV, and 14.1 MeV neutron energies are reported for the first time. This research advances our knowledge of pre-equilibrium emission in the (n,2n) reaction channel by resolving inconsistencies in the Xe data.
134Xe (n2n) reactions14-MeV neutronsCross-sections (CSs)Isomeric ratios (IRs)Covariance analysis
X. Li, L. Liu, W. Jiang, et al., Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility, Chin. Phys. B 31, 038204 (2022). doi: 10.1088/1674-1056/ac48fdhttp://doi.org/10.1088/1674-1056/ac48fd
X. Hu, G. Fan, W. Jiang, et al., Measurements of the 197Au(n, γ) cross section up to 100 keV at the CSNS Back-n facility, Nucl. Sci. Tech. 32, 101 (2021). doi: 10.1007/s41365-021-00931-whttp://doi.org/10.1007/s41365-021-00931-w
X. Hu, L. Liu, W. Jiang, et al., New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility, Chin. Phys. B 31, 080101 (2022). doi: 10.1088/1674-1056/ac6ee2http://doi.org/10.1088/1674-1056/ac6ee2
B. Jiang, J. Han, J. Ren, et al., Measurement of 232Th(n, γ) cross section at the CSNS Back-n facility in the unresolved resonance region from 4 keV to 100 keV, Chin. Phys. B 31, 060101 (2022). doi: 10.1088/1674-1056/ac5394http://doi.org/10.1088/1674-1056/ac5394
J. Tang, Q. An, J. Bai, et al., Back-n white neutron source at CSNS and its applications, Nucl. Sci. Tech. 32, 11 (2021). doi: 10.1007/s41365-021-00846-6http://doi.org/10.1007/s41365-021-00846-6
CINDA-A, The index to literature and computer files on microscopic neutron data, International Atomic Energy Agency, 2000.
V. Mclane, C. L. Dunford and P. F. Rose, Neutron cross sections, Vol. 2, Academic, New York, 1988.
F. Najmabadi, Prospects for attractive fusion power systems. Philos. Trans. Royal Soc. A 357, 625-638 (1999). doi: 10.1098/rsta.1999.0344http://doi.org/10.1098/rsta.1999.0344
Evaluated Nuclear Structure Data File (ENSDF), (Last updated 2022-06-16) http://www.nndc.bnl.gov/ensdf/http://www.nndc.bnl.gov/ensdf/
A. Gandhi, A. Sharma1, Yu. N. Kopatch, et al., Cross section calculation of (n,p) and (n,2n) nuclear reactions on Zn, Mo and Pb isotopes with ~ 14 MeV neutrons. J. Radioanal. Nucl. Chem., 322, 89-97 (2019). doi: 10.1007/s10967-019-06533-6http://doi.org/10.1007/s10967-019-06533-6
J. Luo and L. Jiang, Cross sections for (n,2n), (n,α), (n,p), (n,d) and (n,t) reactions on molybdenum isotopes in the neutron energy range of 13 to 15 MeV. Chin. Phys. C 44, 114002 (2020). doi: 10.1088/1674-1137/abadedhttp://doi.org/10.1088/1674-1137/abaded
R. A. Sigg and P. K. Kuroda, 14.6-MeV neutron activation cross section for the xenon isotopes. Nucl. Sci. Eng. 60, 235-238 (1976). doi: 10.13182/NSE76-A26880http://doi.org/10.13182/NSE76-A26880
E. Kondaiah, N. Ranakumar and R. W. Fink, Thermal neutron activation cross sections for Kr and Xe isotopes. Nucl. Phys. A 120, 329-336 (1968). doi: 10.1016/0375-9474(68)90769-0http://doi.org/10.1016/0375-9474(68)90769-0
C. Bhatia, S. W. Finch, M. E. Gooden et al., 136Xe(n,2n)135Xe cross section between 9 and 15 MeV. Phys. Rev. C 87, 011601(R) (2013). doi: 10.1103/PhysRevC.87.011601http://doi.org/10.1103/PhysRevC.87.011601
Megha Bhike and W. Tornow, Neutron-capture cross-section measurements of 136Xe between 0.4 and 14.8 MeV. Phys. Rev. C 89, 031602(R) (2014). doi: 10.1103/PhysRevC.89.031602http://doi.org/10.1103/PhysRevC.89.031602
Megha Bhike, B. Fallin, M. E. Gooden, et al., Comprehensive sets of 124Xe(n,γ)125Xe and 124Xe(n,2n)123Xe cross-section data for assessment of inertial-confinement deuterium-tritium fusion plasma. Phys. Rev. C 91, 011601(R) (2015). doi: 10.1103/PhysRevC.91.011601http://doi.org/10.1103/PhysRevC.91.011601
J. Luo, L. Jiang, J. Liang, et al., Cross-section measurements of the (n,2n) and (n,p) reactions on 124,126,128,130,131,132Xe in the 14 MeV region and theoretical calculations of their excitation functions. Chin. Phys. C 46, 044001 (2022). doi: 10.1088/1674-1137/ac3fa4http://doi.org/10.1088/1674-1137/ac3fa4
J. Luo, J. Liang, L. Jiang et al., Cross-sections and isomeric ratios for the 136Xe(n,2n)135m,gXe reactions in the 14 MeV region with covariance analysis. Eur. Phys. A 58, 142 (2022). doi: 10.1140/epja/s10050-022-00797-5http://doi.org/10.1140/epja/s10050-022-00797-5
J. Luo, L. Jiang, L. Shan, et al., Determination of the cross-section for (n,p) and (n,α) reactions on 153Eu at neutron energies from 13 to 15 MeV. J. Phys. G: Nucle. Part. Phys. 47, 075104 (2020). doi: 10.1088/1361-6471/ab8d8fhttp://doi.org/10.1088/1361-6471/ab8d8f
Q. Wang, B. Chen, Q. Zhang, et al., Cross-section measurement of (n,2n) reactions for Nd isotopes induced by 14 MeV neutrons. Nucl. Sci. Tech. 30, 8 (2019). doi: 10.1007/s41365-018-0535-5http://doi.org/10.1007/s41365-018-0535-5
Y. Song, F. Zhou, Y. Li, et al., Methods for obtaining characteristic γ-ray net peak count from interlaced overlap peak in HPGe γ-ray spectrometer system. Nucl. Sci. Tech. 30, 11 (2019). doi: 10.1007/s41365-018-0525-7http://doi.org/10.1007/s41365-018-0525-7
A. Koning, S. Hilaire and M. Duijvestijn, “TALYS-1.95, A nuclear reaction program,” NRG-1755 ZG Petten, The Netherlands, 2019, http://www.talys.euhttp://www.talys.eu
International Reactor Dosimetry and Fusion File, IRDFF-II, January, 2020 https://www-nds.iaea.org/IRDFF/https://www-nds.iaea.org/IRDFF/
J. Luo, L. Du and J. Zhao, A method to determine fast neutron energies in large sample. Nucl. Instrum. Meth. B 298, 61-65 (2013). doi: 10.1016/j.nimb.2013.01.029http://doi.org/10.1016/j.nimb.2013.01.029
V.E. Levis and K.J. Zieba, A transfer standard for d+T neutron fluence and energy. Nucl. Instrum. Methods 174, 141-144 (1980). doi: 10.1016/0029-554X(80)90422-Xhttp://doi.org/10.1016/0029-554X(80)90422-X
GammaVision®-32, Gamma-Ray Spectrum Analysis and MCA Emulator, Software User’s Manual, Software Version 5.3
N. Otuka, B. Lalremruata, M.U. Khandaker et al., Uncertainty propagation in activation cross section measurements. Rad. Phys. Chem. 140, 502-510 (2017). doi: 10.1016/j.radphyschem.2017.01.013http://doi.org/10.1016/j.radphyschem.2017.01.013.
A. Gandhi, A. Sharma, R. Pachuau et al., Neutron capture reaction cross section measurement for iodine nucleus with detailed uncertainty quantification. Eur. Phys. J. Plus 136, 819 (2021). doi: 10.1140/epjp/s13360-021-01824-yhttp://doi.org/10.1140/epjp/s13360-021-01824-y.
A. Gandhi, A. Sharma, R. Pachuau, et al., Measurement of (n,α) and (n,2n) reaction cross sections at a neutron energy of 14.92 ± 0.02 MeV for potassium and copper with uncertainty propagation. Chin. Phys. C 46, 014002 (2022). doi: 10.1088/1674-1137/ac2ed4http://doi.org/10.1088/1674-1137/ac2ed4
A. Gandhi, A. Sharma, A. Kumar et al., Measurement of (n,γ), (n,p), and (n,2n) reaction cross sections for sodium, potassium, copper, and iodine at neutron energy 14.92±0.02 MeV with covariance analysis. Phys. Rev. C 102, 014603 (2020). doi: 10.1103/PhysRevC.102.014603http://doi.org/10.1103/PhysRevC.102.014603
W. Dilg, W. Schantl, H. Vonach et al., Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250. Nucl. Phys. A 217, 269-298 (1973). doi: 10.1016/0375-9474(73)90196-6http://doi.org/10.1016/0375-9474(73)90196-6
A. V. Ignatyuk, J. L. Weil, S. Raman, et al., Density of discrete levels in 116Sn. Phys. Rev. C 47, 1504-1513 (1993). doi: 10.1103/PhysRevC.47.1504http://doi.org/10.1103/PhysRevC.47.1504
R. Capote, M. Herman, P. Obložinský et al., RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nuclear Data Sheets 110, 3107-3214 (2009). doi: 10.1016/j.nds.2009.10.004http://doi.org/10.1016/j.nds.2009.10.004
R. K. Singh, N. L. Singh, R. D. Chauhan, et al., Systematic study of the (n, 2n) reaction cross section for 121Sb and 123Sb isotopes. Chin. Phys. C 46, 054002 (2022). doi: 10.1088/1674-1137/ac4a5ahttp://doi.org/10.1088/1674-1137/ac4a5a
ENDF/B-VIII.0 (USA, 2018), Evaluated Nuclear Data File (ENDF) Database Version of 2021-06-28 https://www-nds.iaea.org/exfor/endf.htmhttps://www-nds.iaea.org/exfor/endf.htm
JEFF-3.3 (Europe, 2017), Evaluated Nuclear Data File (ENDF) Database Version of 2022-04-22 https://www-nds.iaea.org/exfor/endf.htmhttps://www-nds.iaea.org/exfor/endf.htm
JENDL-4.0 (Japan,2012), Evaluated Nuclear Data File (ENDF) Database Version of 2022-04-22 https://www-nds.iaea.org/exfor/endf.htmhttps://www-nds.iaea.org/exfor/endf.htm
ROSFOND (Russia, 2010), Evaluated Nuclear Data File (ENDF) Database Version of 2022-04-22 https://www-nds.iaea.org/exfor/endf.htmhttps://www-nds.iaea.org/exfor/endf.htm
CENDL-3 (China, 2020), Evaluated Nuclear Data File (ENDF) Database Version of 2022-04-22 https://www-nds.iaea.org/exfor/endf.htmhttps://www-nds.iaea.org/exfor/endf.htm
S. M. Qaim, A. Mushtaq and M. Uhl, Isomeric cross-section ratio for the formation of 73m,gSe in various nuclear processes. Phys. Rev. C 38, 645-650 (1988). doi: 10.1103/PhysRevC.38.645http://doi.org/10.1103/PhysRevC.38.645
S. M. Qaim, M. Ibn. Majah, R. Wölfle, et al., Excitation functions and isomeric cross-section ratios for the 90Zr(n,p)90Ym,g and 91Zr(n,p)91Ym,g processes. Phys. Rev. C 42, 363-367 (1990). doi: 10.1103/PhysRevC.42.363http://doi.org/10.1103/PhysRevC.42.363
C. D. Nesaraja, S. Sudár and S. M. Qaim, Cross sections for the formation of 69Znm,g and 71Znm,g in neutron induced reactions near their thresholds: Effect of reaction channel on the isomeric cross-section ratio. Phys. Rev. C 68, 024603 (2003). doi: 10.1103/PhysRevC.68.024603http://doi.org/10.1103/PhysRevC.68.024603
S.M. Qaim, Total (n, 2n) cross sections and isomeric cross-section ratios at 14.7 MeV in the region of rare earths. Nucl. Phys. A 224, 319-330 (1974). doi: 10.1016/0375-9474(74)90690-3http://doi.org/10.1016/0375-9474(74)90690-3
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution