1.School of Physics, and International Research Center for Big-Bang Cosmology and Element Genesis, Beihang University, Beijing 100191, China
2.Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354, USA
† zss76@buaa.edu.cn
‡ smithms@ornl.gov
Scan for full text
Si-Zhe Xu, Shi-Sheng Zhang, Xiao-Qian Jiang, et al. The complex momentum representation approach and its application to low-lying resonances in 17O and 29, 31F. [J]. Nuclear Science and Techniques 34(1):5(2023)
Si-Zhe Xu, Shi-Sheng Zhang, Xiao-Qian Jiang, et al. The complex momentum representation approach and its application to low-lying resonances in 17O and 29, 31F. [J]. Nuclear Science and Techniques 34(1):5(2023) DOI: 10.1007/s41365-022-01159-y.
Approaches for predicting low-lying resonances, uniformly treating bound, and resonant levels, have been a long-standing goal in nuclear theory. Accordingly, we explored the viability of the complex momentum representation (CMR) approach coupled with new potentials. We focus on predicting the energy of the low-lying 2p,3/2, resonance in ,17,O, which is critical for s-process nucleosynthesis and missing in previous theoretical research. Using a Woods-Saxon potential based on the Koning-Delaroche optical model and constrained by the experimental one-neutron separation energy, we successfully predicted the resonant energy of this level for the first time. Our predictions of the bound levels and 1d,3/2, resonance agree well with the measurement results. Additionally, we utilize this approach to study the near-threshold resonances that play a role when forming a two-neutron halo in ,29, 31,F. We found that the CMR-based predictions of the bound level energies and unbound 1f,7/2, level agree well with the results obtained using the scattering phase shift method. Subsequently, we successfully found a solution for the 2p,3/2, resonance with energy just above the threshold, which is decisive for halo formation.
Neutron captureLow-lying resonanceCMRResonance energy
N. Prantzos, M. Hashimoto, K. Nomoto, The s-process in massive stars-yields as a function of stellar mass and metallicity. Astron. Astrophys. 234, 211-229 (1990). https://ui.adsabs.harvard.edu/abs/1990AA...234..211Phttps://ui.adsabs.harvard.edu/abs/1990AA...234..211P
P. Mohr, C. Heinz, M. Pignatari et al., Re-evaluation of the 16O (n, γ) 17O cross section at astrophysical energies and its role as a neutron poison in the s-process. Astrophys. J. 827, 29 (2016). doi: 10.3847/0004-637x/827/1/29http://doi.org/10.3847/0004-637x/827/1/29
M. He, S.-S. Zhang, M. Kusakabe et al., Nuclear structures of 17O and time-dependent sensitivity of the weak s-process to the 16O (n, γ) 17O rate. Astrophys. J. 899, 133 (2020). doi: 10.3847/1538-4357/aba7b4http://doi.org/10.3847/1538-4357/aba7b4
S. Zhang, S. Xu, M. He et al., Neutron capture on 16O within the framework of rmf+ accc+ bcs for astrophysical simulations. Eur. Phys. J. A 57, 1-7 (2021). doi: 10.1140/epja/s10050-021-00434-7http://doi.org/10.1140/epja/s10050-021-00434-7
T. Faestermann, P. Mohr, R. Hertenberger et al., Broad levels in 17O and their relevance for the astrophysical s process. Phys. Rev. C 92, 052802 (2015). doi: 10.1103/PhysRevC.92.052802http://doi.org/10.1103/PhysRevC.92.052802
K. Yamamoto, H. Masui, K. Katō et al., Radiative Capture Cross Section for 16O(n,γ)17O and 16O(p,γ)17F below Astrophysical Energies. Prog. of Theor. Phys. 121, 375-390 (2009). doi: 10.1143/PTP.121.375http://doi.org/10.1143/PTP.121.375
N. Michel, W. Nazarewicz, M. Płoszajczak et al., Shell model in the complex energy plane. J. Phys. G 36, 013101 (2008). doi: 10.1088/0954-3899/36/1/013101http://doi.org/10.1088/0954-3899/36/1/013101
Q. Liu, J.-Y. Guo, Z.-M. Niu et al., Resonant states of deformed nuclei in the complex scaling method. Phys. Rev. C 86, 054312 (2012). doi: 10.1103/PhysRevC.86.054312http://doi.org/10.1103/PhysRevC.86.054312
Y.-J. Tian, T.-H. Heng, Z.-M. Niu et al., Exploration of resonances by using complex momentum representation. Chin. Phys. C 41, 044104 (2017). doi: 10.1088/1674-1137/41/4/044104http://doi.org/10.1088/1674-1137/41/4/044104
S.-G. Zhou, J. Meng, P. Ring et al., Neutron halo in deformed nuclei. Phys. Rev. C 82, 011301 (2010). doi: 10.1103/PhysRevC.82.011301http://doi.org/10.1103/PhysRevC.82.011301
A. Moro, J. Lay, Interplay between valence and core excitation mechanisms in the breakup of halo nuclei. Phys. Rev. Lett. 109, 232502 (2012). doi: 10.1103/PhysRevLett.109.232502http://doi.org/10.1103/PhysRevLett.109.232502
S.-S. Zhang, M. S. Smith, Z.-S. Kang et al., Microscopic self-consistent study of neon halos with resonant contributions. Phys. Lett. B 730, 30-35 (2014). https://www.sciencedirect.com/science/article/pii/S0370269314000355https://www.sciencedirect.com/science/article/pii/S0370269314000355
L. Zhou, S.M. Wang, D.Q. Fang, Y.G. Ma, Recent progress in two-proton radioactivity. Nucl. Sci. Tech. 33, 105 (2022). doi: 10.1007/s41365-022-01091-1http://doi.org/10.1007/s41365-022-01091-1
B. Li, N. Tang, Y.H. Zhang, et al. Production of p-rich nuclei with Z=20-25 based on radioactive ion beams. Nucl. Sci. Tech. 33, 55 (2022). doi: 10.1007/s41365-022-01048-4http://doi.org/10.1007/s41365-022-01048-4
D.Z. Chen, D.L. Fang, and C.L. Bai. Impact of finite-range tensor terms in the Gogny force on the β-decay of magic nuclei. Nucl. Sci. Tech. 32, 74 (2021). doi: 10.1007/s41365-021-00908-9http://doi.org/10.1007/s41365-021-00908-9
W. Nan, B. Guo, C.J. Lin, et al. First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at BRIF: measurement of the angular distribution of 23Na + 40Ca elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). doi: 10.1007/s41365-021-00889-9http://doi.org/10.1007/s41365-021-00889-9
S.W. Bai, X.F. Yang, S.J. Wang, et al. Commissioning of a high-resolution collinear laser spectroscopy apparatus with a laser ablation ion source. Nucl. Sci. Tech. 33, 9 (2022). doi: 10.1007/s41365-022-00992-5http://doi.org/10.1007/s41365-022-00992-5
B. M. Sherrill, Future opportunities at the facility for rare isotope beams, in: EPJ Web of Conferences, volume 178, EDP Sciences, 2018, p. 01001. doi: 10.1051/epjconf/201817801001http://doi.org/10.1051/epjconf/201817801001
T. Nilsson, Radioactive ion beams at fair-nustar, Eur. Phys. J-Spec. Top. 156, 1-12 (2008). doi: 10.1140/epjst/e2008-00606-2http://doi.org/10.1140/epjst/e2008-00606-2
A. Balantekin, J. Carlson, D. Dean et al., Nuclear theory and science of the facility for rare isotope beams. Mod. Phys. Lett. A 29, 1430010 (2014). doi: 10.1142/S0217732314300109http://doi.org/10.1142/S0217732314300109
J. Singh, J. Casal, W. Horiuchi et al., Exploring two-neutron halo formation in the ground state of 29F within a three-body model. Phys. Rev. C 101, 024310 (2020). doi: 10.1103/PhysRevC.101.024310http://doi.org/10.1103/PhysRevC.101.024310
S. Bagchi, R. Kanungo, Y. K. Tanaka et al., Two-neutron halo is unveiled in 29F. Phys. Rev. Lett. 124, 222504 (2020). doi: 10.1103/PhysRevLett.124.222504http://doi.org/10.1103/PhysRevLett.124.222504
A. Revel, O. Sorlin, F. M. Marqués et al., (SAMURAI21 collaboration), Extending the southern shore of the island of inversion to 28F. Phys. Rev. Lett. 124, 152502 (2020). doi: 10.1103/PhysRevLett.124.152502http://doi.org/10.1103/PhysRevLett.124.152502
D. S. Ahn, N. Fukuda, H. Geissel et al., Location of the neutron dripline at fluorine and neon. Phys. Rev. Lett. 123, 212501 (2019). doi: 10.1103/PhysRevLett.123.212501http://doi.org/10.1103/PhysRevLett.123.212501
G. Christian, N. Frank, S. Ash et al., Exploring the low-z shore of the island of inversion at n=19. Phys. Rev. Lett. 108, 032501 (2012). doi: 10.1103/PhysRevLett.108.032501http://doi.org/10.1103/PhysRevLett.108.032501
L. Gaudefroy, W. Mittig, N. Orr et al., Direct mass measurements of 19B, 22C, 29F, 31Ne, 34Na and other light exotic nuclei. Phys. Rev. Lett. 109, 202503 (2012). doi: 10.1103/PhysRevLett.109.202503http://doi.org/10.1103/PhysRevLett.109.202503
H. Masui, W. Horiuchi, M. Kimura, Two-neutron halo structure of f 31 and a novel pairing antihalo effect. Phys. Rev. C 101, 041303 (2020). doi: 10.1103/PhysRevC.101.041303http://doi.org/10.1103/PhysRevC.101.041303
I. Hamamoto, Deformed halo of 929f20. Phys. Lett. B 814, 136116 (2021). https://www.sciencedirect.com/science/article/pii/S0370269321000563https://www.sciencedirect.com/science/article/pii/S0370269321000563
L. Li, J. Meng, P. Ring et al., Deformed relativistic hartree-bogoliubov theory in continuum. Phys. Rev. C 85, 024312 (2012). doi: 10.1103/PhysRevC.85.024312http://doi.org/10.1103/PhysRevC.85.024312
G. Hagen, J. S. Vaagen, Study of resonant structures in a deformed mean field by the contour deformation method in momentum space. Phys. Rev. C 73, 034321 (2006). doi: 10.1103/PhysRevC.73.034321http://doi.org/10.1103/PhysRevC.73.034321
A. Bohr, B. R. Mottelson, Nuclear Structure, volume I, World Scientific, 1998.
A. Koning, J. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713, 231-310 (2003). doi: 10.1016/S0375-9474(02)01321-0http://doi.org/10.1016/S0375-9474(02)01321-0
C. V. Sukumar, Schrodinger equation in momentum space. J. Phys. A Mathematic. General 12, 1715-1730 (1979). doi: 10.1088/0305-4470/12/10/018http://doi.org/10.1088/0305-4470/12/10/018
Y. R. Kwon, F. Tabakin, Hadronic atoms in momentum space. Phys. Rev. C 18, 932-943 (1978). doi: 10.1103/PhysRevC.18.932http://doi.org/10.1103/PhysRevC.18.932
N. Li, M. Shi, J.-Y. Guo, et al., Probing resonances of the dirac equation with complex momentum representation. Phys. Rev. Lett. 117, 062502 (2016). doi: 10.1103/PhysRevLett.117.062502http://doi.org/10.1103/PhysRevLett.117.062502
M. Wang, W. Huang, F. Kondev et al., The AME 2020 atomic mass evaluation (II). tables, graphs and references, Chin. Phys. C 45, 030003 (2021). doi: 10.1088/1674-1137/abddafhttp://doi.org/10.1088/1674-1137/abddaf
R. B. Firestone, Z. Revay, Thermal neutron capture cross sections for 16,17,18O and 2H, Phys. Rev. C 93, 044311 (2016). doi: 10.1103/PhysRevC.93.044311http://doi.org/10.1103/PhysRevC.93.044311
Y. Nagai, M. Kinoshita, M. Igashira et al., Nonresonant p-wave direct capture and interference effect observed in the 16O (n, γ) 17O reaction, Phys. Rev. C 102, 044616 (2020). doi: 10.1103/PhysRevC.102.044616http://doi.org/10.1103/PhysRevC.102.044616
M. Pillai, J. Goglio, T. G. Walker, Matrix numerov method for solving schrödinger equation, Am. J. Phys. 80 (2012) 1017-1019. doi: 10.1119/1.4748813http://doi.org/10.1119/1.4748813
M. Bhat, A. P. Monteiro, Numerical solution of schroedinger equation using matrix numerov method with woods - saxon potential, Proceedings of the DAE-BRNS symposium on nuclear physics, Prasanthi Nilayam (India); 7-11 December 2015
Y.-X. Luo, K. Fossez, Q. Liu et al., Role of quadrupole deformation and continuum effects in the “island of inversion” nuclei 28,29,31F, Phys. Rev. C 104, 014307 (2021). doi: 10.1103/PhysRevC.104.014307http://doi.org/10.1103/PhysRevC.104.014307
K. Bennaceur, F. Nowacki, J. Okołowicz et al., Analysis of the 16O (p, γ) 17F capture reaction using the shell model embedded in the continuum, Nucl. Phys. A 671, 203-232 (2000). doi: 10.1016/S0375-9474(99)00851-9http://doi.org/10.1016/S0375-9474(99)00851-9
G. Cattapan, E. Maglione, From bound states to resonances: Analytic continuation of the wave function. Phys. Rev. C 61, 067301 (2000). doi: 10.1103/PhysRevC.61.067301http://doi.org/10.1103/PhysRevC.61.067301
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution