1.School of Electronics, Hefei University of Technology, Hefei 230009, China
2.China Nuclear Power Engineering Co., Ltd., Beijing 100840, China
3.Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
liusx@hfut.edu.cn
* zhangweid@cnpe.cc,
caohr@ipp.ac.cn,
Scan for full text
Shi-Xing Liu, Wei Zhang, Zi-Han Zhang, et al. Performance of real-time neutron/gamma discrimination methods. [J]. Nuclear Science and Techniques 34(1):8(2023)
Shi-Xing Liu, Wei Zhang, Zi-Han Zhang, et al. Performance of real-time neutron/gamma discrimination methods. [J]. Nuclear Science and Techniques 34(1):8(2023) DOI: 10.1007/s41365-022-01160-5.
Nuclear security usually requires the simultaneous detection of neutrons and gamma rays. With the development of crystalline materials in recent years, Cs,2,LiLaBr,6, (CLLB) dual-readout detectors have attracted extensive attention from researchers, where real-time neutron/gamma pulse discrimination is the critical factor among detector performance parameters. This study investigated the discrimination performance of the charge comparison, amplitude comparison, time comparison, and pulse gradient methods and the effects of a Sallen–Key filter on their performance. Experimental results show that the figure of merit (FOM) of all four methods is improved by proper filtering. Among them, the charge comparison method exhibits excellent noise resistance; moreover, it is the most suitable method of real-time discrimination for CLLB detectors. However, its discrimination performance depends on the parameters ,t,s,t,m, and ,t,e,. When ,t,s, corresponds to the moment at which the pulse is at 10% of its peak value,t,e, requires a delay of only 640 to 740 ns compared to ,t,s, at which time the potentially optimal FOM of the charge comparison method at 3.1–3.3 MeV is greater than 1.46. The FOM obtained using the ,t,m, value calculated by a proposed maximized discrimination difference model(MDDM) and the potentially optimal FOM differ by less than 3.9%, indicating that the model can provide good guidance for parameter selection in the charge comparison method.
Charge comparisonMaximized discrimination difference modelPulse filteringReal-timen-γ discrimination
M. Kamuda, C.J. Sullivan, An automated isotope identification and quantification algorithm for isotope mixtures in low-resolution gamma-ray spectra. Radiat. Phys. Chem. 155, 281-286 (2019). doi: 10.1016/j.radphyschem.2018.06.017http://doi.org/10.1016/j.radphyschem.2018.06.017
Z. Varga, M. Wallenius, A. Nicholl et al., Assessment of uranium inhomogeneity and isotope imaging for nuclear forensics. Spectrochim Acta. B. 171, 105920 (2020). doi: 10.1016/j.sab.2020.105920http://doi.org/10.1016/j.sab.2020.105920
M.J. Zhou, L.Q. Hu, L.S. Huang et al., Measurement of the radiation dose distribution in EAST hall based on thermoluminescence dosimeter. Fusion. Eng. Des. 160, 111977 (2020). doi: 10.1016/j.fusengdes.2020.111977http://doi.org/10.1016/j.fusengdes.2020.111977
Š. Čerba, J. Lüley, B. Vrban et al., Unmanned radiation-monitoring system. IEEE T. Nucl. Sci. 67(4), 636-643 (2020). doi: 10.1109/TNS.2020.2970782http://doi.org/10.1109/TNS.2020.2970782
H.-R. Liu, Y.-X. Cheng, Z. Zuo et al., Discrimination of neutrons and gamma-rays in plastic scintillator based on pulse coupled neural network. Nucl. Sci. Tech. 32(8), 82(2021) doi: 10.1007/s41365-021-00915-w.http://doi.org/10.1007/s41365-021-00915-w.
R.T. Kouzes, J.H. Ely, L.E. Erikson et al., Neutron detection alternatives to 3He for national security applications. Nucl. Instrum. Meth. A. 623(3), 1035-1045 (2010). doi: 10.1016/j.nima.2010.08.021http://doi.org/10.1016/j.nima.2010.08.021
P.R. Menge, J. Lejay, V. Ouspenski, Design and performance of a compact Cs2LiLaBr6(Ce) neutron/gamma detector using silicon photomultipliers. 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (San Diego, USA 31 Oct.-7 Nov. 2015)
J. Glodo, R. Hawrami, E. van Loef et al., Pulse shape discrimination with selected elpasolite crystals. IEEE T. Nucl. Sci. 59(5), 2328-2333 (2012). doi: 10.1109/TNS.2012.2188646http://doi.org/10.1109/TNS.2012.2188646
J. Glodo, E. van Loef, R. Hawrami, Selected properties of Cs2LiYCl6, Cs2LiLaCl6 and Cs2LiLaBr6 scintillators. IEEE T. Nucl. Sci. 58 (1), 333-338 (2011). doi: 10.2098045http://doi.org/10.2098045
R.S. Woolf, B.F. Phlips, E.A. Wulf. Characterization of the internal background for thermal and fast neutron detection with CLLB. Nucl. Instrum. Meth. A. 838, 147-153 (2016). doi: 10.1016/j.nima.2016.09.013http://doi.org/10.1016/j.nima.2016.09.013
R.S. Woolf, E.A. Wulf, B.F. Phlips et al., Identification of internal radioactive contaminants in elpasolites (CLYC, CLLB, CLLBC) and other inorganic scintillators. Nucl. Instrum. Meth. A. 954, 161228 (2020). doi: 10.1016/j.nima.2018.09.063http://doi.org/10.1016/j.nima.2018.09.063
J.-L. Cai, D.-W. Li, P.-L. Wang et al., Fast pulse sampling module for real-time neutron-gamma discrimination. Nucl. Sci. Tech. 30(5), 84 (2019) doi: 10.1007/s41365-019-0595-1http://doi.org/10.1007/s41365-019-0595-1
F.D. Brooks, Development of organic scintillators. Nucl. Instrum. Methods. 162(1-3), 477-505 (1979). doi: 10.1016/0029-554X(79)90729-8http://doi.org/10.1016/0029-554X(79)90729-8
M. Moszynski, G. Bizard, G.J. Costa et al., Study of n-γ discrimination by digital charge comparison method for a large volume liquid scintillator. Nucl. Instrum. Meth. A. 317(1-2), 262-272 (1992). doi: 10.1016/0168-9002(92)90617-Dhttp://doi.org/10.1016/0168-9002(92)90617-D
B.D. Mellow, M.D. Aspinall, R.O. Mackin et al., Digital discrimination of neutrons and γ-rays in liquid scintillators using pulse gradient analysis. Nucl. Instrum. Meth. A. 578(1), 191-197 (2007). doi: 10.1016/j.nima.2007.04.174http://doi.org/10.1016/j.nima.2007.04.174
G. Liu, M.J. Joyce, X. Ma et al., A digital method for the discrimination of neutrons and γ rays with organic scintillation detectors using frequency gradient analysis. IEEE T. Nucl. Sci. 57(3), 1682-1691 (2010). doi: 10.2044246http://doi.org/10.2044246
S. Yousefi, L. Lucchese, A wavelet-based pulse shape discrimination method for simultaneous beta and gamma spectroscopy. Nucl. Instrum. Meth. A. 599(1), 66-73 (2009). doi: 10.1016/j.nima.2008.10.026http://doi.org/10.1016/j.nima.2008.10.026
M.Z. Liu, B.Q. Liu, Z. Zuo et al., Toward a fractal spectrum approach for neutron and gamma pulse shape discrimination. Chinese Phys. C 40(6), 066201 (2016). doi: 10.1088/1674-1137/40/6/066201http://doi.org/10.1088/1674-1137/40/6/066201
P.A. Söderström, G. Jaworski, J.J.V. Dobón et al., Neutron detection and γ-ray suppression using artificial neural networks with the liquid scintillators BC-501A and BC-537. Nucl. Instrum. Meth. A 916, 238-245 (2019). doi: 10.1016/j.nima.2018.11.122http://doi.org/10.1016/j.nima.2018.11.122
M. Gelfusa, R. Rossi, M. Lungaroni et al., Advanced pulse shape discrimination via machine learning for applications in thermonuclear fusion. Nucl. Instrum. Meth. A 974, 164198 (2020). doi: 10.1016/j.nima.2020.164198http://doi.org/10.1016/j.nima.2020.164198
H. Arahmane, A. Mahmoudi, E. M. Hamzaoui et al., Neutron-gamma discrimination based on support vector machine combined to nonnegative matrix factorization and continuous wavelet transform. Measurement. 149, 106958 (2020). https://doi.org/10.1016/j.measurement.2019.106958
S. Woldegiorgis, A. Enqvist, J. Baciak, ResNet and CycleGAN for pulse shape discrimination of He-4 detector pulses: Recovering pulses conventional algorithms fail to label unanimously. Appl. Radiat. Isotopes. 176, 109819 (2021). https://doi.org/10.1016/j.apradiso.2021.109819
Z. Zuo, Y.L. Xiao, Z.F. Liu et al., Discrimination of neutrons and gamma-rays in plastic scintillator based on falling-edge percentage slope method. Nucl. Instrum. Meth. A 1010, 165483 (2021). doi: 10.1016/j.nima.2021.165483http://doi.org/10.1016/j.nima.2021.165483
CLLB.Handbook.https://www.crystals.saint-gobain.com/sites/hps-mac3-cma-crystals/files/2021-09/CLLB-Material-Data-Sheet.pdfhttps://www.crystals.saint-gobain.com/sites/hps-mac3-cma-crystals/files/2021-09/CLLB-Material-Data-Sheet.pdf
L. Yang, H.R. Cao, J.L. Zhao et al., Development of a wide-range and fast-response digitizing pulse signal acquisition and processing system for neutron flux monitoring on EAST. Nucl. Sci. Tech. 33(35), 1-11 (2022). doi: 10.1007/s41365-022-01016-yhttp://doi.org/10.1007/s41365-022-01016-y
Y.Y. Zheng, Z.H. Zhang, Q. Li et al., Design of an energetic particle radiation diagnostic spectroscopy system based on national core chips and Qt on Linux in EAST. Nucl. Sci. Tech. 32, 68 (2021). doi: 10.1007/s41365-021-00906-xhttp://doi.org/10.1007/s41365-021-00906-x
H.Q. Zhang, B. Tang, H.X. Wu et al., Study of Sallen–Key digital filters in nuclear pulse signal processing. Nucl. Sci. Tech. 30(10), 145 (2019). doi: 10.1007/s41365-019-0679-yhttp://doi.org/10.1007/s41365-019-0679-y
S. Saxena, A.I. Hawari, Investigation of FPGA-based real-time adaptive digital pulse shaping for high-count-rate applications. IEEE T. Nucl. Sci. 64(7), 1733-1738 (2017). doi: 10.1109/TNS.2017.2692219http://doi.org/10.1109/TNS.2017.2692219
W. Gao, S. Li, Y. Duan et al., Design and Characterization of a Low-Noise Front-End Readout ASIC in 0.18- μ m CMOS Technology for CZT/Si-PIN Detectors. IEEE T. Nucl. Sci. 65(5), 1203-1211 (2018). doi: 10.1109/TNS.2018.2826070http://doi.org/10.1109/TNS.2018.2826070
R.A. Winyard, J.E. Lutkin, G.W. McBeth, Pulse shape discrimination in inorganic and organic scintillators. I. Nucl. Instrum. Methods. 95(1), 141-153 (1971). doi: 10.1016/0029-554X(71)90054-1http://doi.org/10.1016/0029-554X(71)90054-1
Z.H. Wang, J. Zeng, T.H. Zhu et al., Optimization of integration limit in the charge comparison method based on signal shape function. Nucl. Instrum. Meth. A. 760 5-9 (2014). doi: 10.1016/j.nima.2014.05.017http://doi.org/10.1016/j.nima.2014.05.017
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution