1.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2.Spallation Neutron Source Science Center, Dongguan 523803, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
* zhoujr@ihep.ac.cn,
sunzj@ihep.ac.cn
Scan for full text
Lin Zhu, Jian-Rong Zhou, Yuan-Guang Xia, et al. Large area 3He tube array detector with modular design for multi-physics instrument at CSNS. [J]. Nuclear Science and Techniques 34(1):1(2023)
Lin Zhu, Jian-Rong Zhou, Yuan-Guang Xia, et al. Large area 3He tube array detector with modular design for multi-physics instrument at CSNS. [J]. Nuclear Science and Techniques 34(1):1(2023) DOI: 10.1007/s41365-022-01161-4.
The multi-physics instrument (MPI) is the first user cooperative instrument at the China Spallation Neutron Source (CSNS). It was designed to explore the structures of complex materials at multiple scales based on the neutron total scattering technique. This imposes the requirements for the detector, including a high detection efficiency to reduce the measurement time and a large solid angle coverage to cover a wide range of momentum transfers. To satisfy these demands, a large-area array of ,3,He-filled linear position-sensitive detectors (LPSDs) was constructed, each with a diameter of 1 inch and pressure of 20 atm. It uses an orbicular layout of the detector and an eight-pack module design for the arrangement of ,3,He LPSDs, covering a range of scattering angles from 3° to 170° with a total detector area of approximately 7 m,2,. The detector works in air, which is separated from the vacuum environment to facilitate installation and maintenance. The characteristics of the MPI detector were investigated through Monte Carlo (MC) simulations using Geant4 and experimental measurements. The results suggest that the detectors are highly efficient in the wavelength range of the MPI, and an efficiency over 25% is achievable for above 0.1 Å neutrons. A minimal position resolution of 6.4 mm full width at half maximum (FWHM) along the tube length was achieved at a working voltage of 2200 V, and a deviation below 2 mm between the real and measured positions was attained in the beam experiment. The detector module exhibited good consistency and an excellent counting rate capacity of up to 80 kHz, which satisfied the requirements of experiments with a high event rate. Observations of its operation over the past year have shown that the detector works steadily in sample experiments, which allows the MPI to serve the user program successfully.
Neutron detectorLPSDPosition resolutionCounting rate capacity
T.E. Mason, D. Abernathy, I. Anderson et al., The Spallation Neutron Source in Oak Ridge: A powerful tool for materials research. Physica. B 385–386, 955-960 (2006). doi: 10.1016/j.physb.2006.05.281http://doi.org/10.1016/j.physb.2006.05.281
J.W. Thomason, The ISIS spallation neutron and muon source—The first thirty-three years. Nucl. Instrum. Meth. A 917, 61-67 (2019). doi: 10.1016/j.nima.2018.11.129http://doi.org/10.1016/j.nima.2018.11.129
Y. Oyama, J-PARC and new era of science. Nucl. Instrum. Meth. A 562, 548-552 (2006). doi: 10.1016/j.nima.2006.02.139http://doi.org/10.1016/j.nima.2006.02.139
H.S. Chen, X.L. Wang, China's first pulsed neutron source. Nat. Mater 15, 689-691 (2016). doi: 10.1038/nmat4655http://doi.org/10.1038/nmat4655
M. Lindroos, S. Bousson, R. Calaga et al., The European Spallation Source. Nucl. Instrum. Meth. B 269, 3258-3260 (2011). doi: 10.1016/j.nimb.2011.04.012http://doi.org/10.1016/j.nimb.2011.04.012
T.Y. Tang, Q. An, J.B. Bai et al., Back-n white neutron source at CSNS and its applications. Nucl. Sci. Tech. 32, 11 (2021). doi: 10.1007/s41365-021-00846-6http://doi.org/10.1007/s41365-021-00846-6
X.R. Xu, G.T. Fan, W. Jiang et al., Measurements of the 197Au(n, γ) cross section up to 100 keV at the CSNS Back-n facility. Nucl. Sci. Tech. 32, 101 (2021). doi: 10.1007/s41365-021-00931-whttp://doi.org/10.1007/s41365-021-00931-w
Y.B. Ke, C.Y. He, H.B. Zheng et al., The time-of-flight Small-Angle Neutron Spectrometer at China Spallation Neutron Source. Neutron News 29, 14-17 (2018). doi: 10.1080/10448632.2018.1514197http://doi.org/10.1080/10448632.2018.1514197
X.F. Jiang, J.R. Zhou, H. Luo et al., A large area 3He tube array detector with vacuum operation capacity for the SANS instrument at the CSNS. Nucl. Sci. Tech. 33, 89 (2022). doi: 10.1007/s41365-022-01067-1http://doi.org/10.1007/s41365-022-01067-1
T. Zhu, X.Z. Zhan, S.W. Xiao et al., MR: The multipurpose reflectometer at CSNS. Neutron News 29, 11-13 (2018). doi: 10.1080/10448632.2018.1514196http://doi.org/10.1080/10448632.2018.1514196
J. Chen, L. Kang, H.L. Lu, The general purpose powder diffractometer at CSNS. Physica. B 551, 370-372 (2018). doi: 10.1016/j.physb.2017.11.005http://doi.org/10.1016/j.physb.2017.11.005
A. Salman, J.R. Zhou, J.Q Yang et al., First neutron Bragg-edge imaging experimental results at CSNS. Chin. Phys. Lett. 33, 062901 (2022). doi: 10.1088/0256-307X/39/6/062901http://doi.org/10.1088/0256-307X/39/6/062901
J. Chen, Z.J. Tan, W.Q. Liu et al., First neutron Bragg-edge imaging experimental results at CSNS*. Chin. Phys. B 30, 9 (2021). doi: 10.1088/1674-1056/ac0da7http://doi.org/10.1088/1674-1056/ac0da7
J.P. Zhang, C.Y. Huang, Z.C. Qin et al., In-situ optical pumping for polarizing He-3 neutron spin filters at the China Spallation Neutron Source. Sci. China Phys. Mech. Astron. 65, 241011 (2022). doi: 10.1007/s11433-021-1876-0http://doi.org/10.1007/s11433-021-1876-0
B. Wu, X. Li, Z. Li et al., Development of a large nanocrystalline soft magnetic alloy core with high mu 'pQf products for CSNS-II. Nucl. Sci. Tech. 33, 99 (2022). doi: 10.1007/s41365-022-01087-xhttp://doi.org/10.1007/s41365-022-01087-x
T.R. Liang, F. Shen, W. Yin et al., Monte Carlo shielding evaluation of a CSNS Multi-Physics instrument. Nucl. Eng. Technol 51, 1998-2004 (2019). doi: 10.1016/j.net.2019.06.006http://doi.org/10.1016/j.net.2019.06.006
J.P. Xu, Y.G. Xia, Z.D. Li et al., Multi-physics instrument: Total scattering neutron time-of-flight diffractometer at China Spallation Neutron Source. Nucl. Instrum. Meth. A 1013, 165642 (2021). doi: 10.1016/j.nima.2021.165642http://doi.org/10.1016/j.nima.2021.165642
R.I. Bewley, J.W. Taylor, S.M. Bennington, LET, a cold neutron multi-disk chopper spectrometer at ISIS. Nucl. Instrum. Meth. A 637, 128-134 (2011). doi: 10.1016/j.nima.2011.01.173http://doi.org/10.1016/j.nima.2011.01.173
J.K. Zhao, C.Y. Gao, D. Li et al., The extended Q-range small-angle neutron scattering diffractometer at the SNS. J. Appl. Crystallogy 43, 1068-1077 (2010). doi: 10.1107/S002188981002217Xhttp://doi.org/10.1107/S002188981002217X
J.D. Beal, K.D. Berry, R.A. Riedel et al., The NOMAD instrument neutron detector array at the SNS. Nucl. Instrum. Meth. A 1018, 165851 (2021). doi: 10.1016/j.nima.2021.165851http://doi.org/10.1016/j.nima.2021.165851
J. Ollivier, H. Mutka, L. Didier, The new cold neutron Time-of-Flight spectrometer IN5. Neutron News 21, 22-25 (2010). doi: 10.1080/10448631003757573http://doi.org/10.1080/10448631003757573
S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Meth. A 506, 250-303 (2003). doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
X.G. Wu, Y.B. Zhao, H. Luo et al., Test of a 3He neutron detector readout electronics prototype for CSNS multipurpose physics neutron diffractometer. RDTM 5, 200-206 (2021). doi: 10.1007/s41605-020-00235-4http://doi.org/10.1007/s41605-020-00235-4
S. Bönisch, B. Namaschk, F. Wulf, Charge equalizing and error estimation in position sensitive neutron detectors. Nucl. Instrum. Meth. A 570, 133-139 (2007). doi: 10.1016/j.nima.2006.10.002http://doi.org/10.1016/j.nima.2006.10.002
A. Ravazzani, A.F. Para, R. Jaime et al., Characterisation of 3He proportional counters. Radiat. Meas 41, 582-593 (2006). doi: 10.1016/j.radmeas.2005.08.004http://doi.org/10.1016/j.radmeas.2005.08.004
0
Views
14
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution