1.Nuclear Research Center, Egyptian Atomic Energy Authority, Abo Zaabal, Cairo 13759, Egypt
2.Department of Nuclear and Radiological Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
3.Faculty of Engineering, Egyptian Russian University, Badr 11829, Egypt
Khaled M. Yassin eng.khaled_m@yahoo.com
Mohamed H. Hassan mohamed.hassan@alexu.edu.eg
Mohammad M. Ghoneim mohghon1@yahoo.com
Mostafa S. Elkolil moustafa_elkoliel@yahoo.com
Adel Alyan adelalyan@yahoo.com
Said A. Agamy sa_agamy@yahoo.com
Scan for full text
Khaled M. Yassin, Mohamed H. Hassan, Mohammad M. Ghoneim, et al. Multiphysics simulation of VVER-1200 fuel performance during normal operating conditions. [J]. Nuclear Science and Techniques 34(2):28(2023)
Khaled M. Yassin, Mohamed H. Hassan, Mohammad M. Ghoneim, et al. Multiphysics simulation of VVER-1200 fuel performance during normal operating conditions. [J]. Nuclear Science and Techniques 34(2):28(2023) DOI: 10.1007/s41365-023-01172-9.
Nuclear fuel performance modeling and simulation are critical tasks for nuclear fuel design optimization and safety analysis under normal and transient conditions. Fuel performance is a complicated phenomenon that involves thermal, mechanical, and irradiation mechanisms and requires special multiphysics modules. In this study, a fuel performance model was developed using the COMSOL Multiphysics platform. The modeling was performed for a 2D axis-symmetric geometry of a UO,2, fuel pellet in the E110 clad for VVER-1200 fuel. The modeling considers all relevant phenomena, including heat generation and conduction, gap heat transfer, elastic strain, mechanical contact, thermal expansion, grain growth, densification, fission gas generation and release, fission product swelling, gap/plenum pressure, and cladding thermal and irradiation creep. The model was validated using a code-to-code evaluation of the fuel pellet centerline and surface temperatures in the case of constant power, in addition to validation of fission gas release (FGR) predictions. This prediction proved that the model could perform according to previously published VVER nuclear fuel performance parameters. A sensitivity study was also conducted to assess the effects of uncertainty on some of the model parameters. The model was then used to predict the VVER-1200 fuel performance parameters as a function of burnup, including the temperature profiles, gap width, fission gas release, and plenum pressure. A compilation of related material and thermomechanical models was conducted and included in the modeling to allow the user to investigate different material/performance models. Although the model was developed for normal operating conditions, it can be modified to include off-normal operating conditions.
VVER-1200Fuel performanceCOMSOL codeZr-1%Nb claddingUO2 fuel rod
IAEA, Quality and Reliability Aspects in Nuclear Power Reactor Fuel Engineering. Vienna, 2015.
P.R. Roy, D.N. Sah, Irradiation behaviour of nuclear fuels. Pramana-J. Phys 24, 397–421 (1985), doi: 10.1007/BF02894841http://doi.org/10.1007/BF02894841
C.R. Hann, C.E. Beyer, L. J. Parchen et al., GAPCON-THERMAL-1: a computer program for calculating the gap conductance in oxide fuel pins. 1973, Battelle Pacific Northwest Labs. https://digital.library.unt.edu/ark:/67531/metadc1019317/https://digital.library.unt.edu/ark:/67531/metadc1019317/
T. Nakajima, H. Saito, T. Osaka., FEMAXI-IV: a computer code for the analysis of thermal and mechanical behavior of light water reactor fuel rods. Nucl. Eng. Des. 148, 41-52, (1994). doi: 10.1016/0029-5493(94)90240-2http://doi.org/10.1016/0029-5493(94)90240-2.
W.F. Lyon, M.N. Jahingir, R.O. Montgomery et al., Fuel analysis and licensing code: FALCON MOD01: Volume 3: Verification and validation. EPRI, Palo Alto, CA 1011309 (2004).
G.A. Berna, C.E. Beyer, K.L. Davis et al., FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup. US NRC, Office of Nuclear Regulatory Research NUREGKR-6534, Volume 2 Washington, 1997.
J.M. Cuta, C.E. Beyer, K.J. Geelhood et al., FRAPTRAN 1.4: a computer code for the transient analysis of oxide fuel rods. US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, NUREG/CR-7023, 2011.
A. Prudil, B.J. Lewis, P.K. Chan et al., Development and testing of the FAST fuel performance code: Normal operating conditions (Part 1), Nucl. Eng. Des. 282, 158-168, (2015). doi: 10.1016/j.nucengdes.2014.09.036http://doi.org/10.1016/j.nucengdes.2014.09.036.
P.V. Uffelen, P. Bliar, S. Boneva et al., The Application of the TRANSURANUS Fuel Performance Code to WWER Fuel: An Overview. 13 International Conference on WWER Fuel Performance, Modeling and Experimental Support (Nesebar Bulgaria; 15-21 Sep 2019).
S. Stefanova, I.G. Kolev, P. Chantoin et al., VVER Reactor Fuel Performance, International conference on WWER fuel performance, modelling and experimental support Proceedings., (St Constantine, Varna, Bulgaria, 7-11 November 1994).
R.L. Williamson, J.D. Hales, S.R. Novascone et al., Multidimensional multiphysics simulation of nuclear fuel behavior. J. Nucl. Mater. 423, 149-163 (2012). doi: 10.1016/j.jnucmat.2012.01.012http://doi.org/10.1016/j.jnucmat.2012.01.012.
R.L. Williamson, J.D. Hales, S.R. Novascone et al., BISON theory manual the equations behind nuclear fuel analysis., Idaho National Lab.(INL), Idaho Falls, 2016, doi: 10.2172/1374503http://doi.org/10.2172/1374503.
R. Liu, W. Zhou, P. Shen et al., Fully coupled multiphysics modeling of enhanced thermal conductivity UO2–BeO fuel performance in a light water reactor. Nucl. Eng. Des. 295, 511-523, (2015). doi: 10.1016/j.nucengdes.2015.10.019http://doi.org/10.1016/j.nucengdes.2015.10.019.
A. Prudil, B.J. Lewis, P.K. Chan et al., Development and testing of the FAST fuel performance code: Transient conditions (Part 2). Nucl. Eng. Des. 282, 169-177 (2015). doi: 10.1016/j.nucengdes.2014.11.036http://doi.org/10.1016/j.nucengdes.2014.11.036.
L.T. Yanko, Nuclear fuel for VVER-1200. Rosatom Seminar on Russian Nuclear Energy Technologies and Solutions, April 2-3, 2012.
R. Liu, A. Prudil, W.Z. Zhou et al., Multiphysics coupled modeling of light water reactor fuel performance. Prog. Nucl. Energy 91, 38-48 (2016). doi: 10.1016/j.pnucene.2016.03.030http://doi.org/10.1016/j.pnucene.2016.03.030.
D. Morgan, Dissertation, Royal Military College of Canada, Kingston, Ontario, Canada, 2007.
A.A. Galahom, Improvement of the VVER-1200 fuel cycle by introducing thorium with different fissile material in blanket-seed assembly. Nucl. Sci. Eng. 193, 638-651 (2019). doi: 10.1080/00295639.2018.1560757http://doi.org/10.1080/00295639.2018.1560757.
V. Molchanov, Nuclear fuel for VVER reactors. Actual state and trends. 8th International Conference on VVER Fuel Performance, Modeling and Experimental Support 27.09–02.10.2009, Helena Resort, Bulgaria, 2009.
Y. Semchenkov, Y. Styrin, Advancing of VVER Reactor Core. BULATOM International Nuclear Forum on Nuclear Energy - challenges and prospects, (Varna, Bulgaria, 9-11 June, 2010).
L.T. Yanko, Nuclear fuel for VVER-1200. Rosatom Seminar on Russian Nuclear Energy Technologies and Solutions, (Johannesburg, South Africa, 2-3 Apr, 2012).
IAEA. Status report 108 - VVER-1200 (V-491) (VVER-1200 (V-491)). 2011; Available from: https://aris.iaea.org/PDF/VVER-1200(V-491).pdfhttps://aris.iaea.org/PDF/VVER-1200(V-491).pdf.
C.M. Allison, D.T. Hagrman, G.A. Berna et al., SCDAP/RELAP5/MOD3. 1 Code Manual Volume IV: MATPRO. U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, NUREG/CR-6150, Volume 4. Washington, 1995. doi: 10.2172/100327http://doi.org/10.2172/100327.
A. Shestopalov, K. Lioutov, L. Yegorova, Modification of USNRC's FRAP-T6 Fuel Rod Transient Code for High Burnup VVER Fuel. U.S. Nuclear Regulatory Commission, NUREG/IA-0164 Washington, 1999.
A. Shestopalov, K. Lioutov, L. Yegorova, Adaptation of USNRC's FRAPTRAN and IRSN's SCANAIR Transient Codes and Updating of MATPRO Package for Modeling of LOCA and RIA Validation Cases with Zr-1% Nb (VVER Type) Cladding. U.S. NRC, NUREG/IA-0209, Washington, 2003.
IAEA, Design and Performance of WWER Fuel. Technical Reports Series No. 379, Vienna (1996).
J.K. Fink, Thermophysical properties of uranium dioxide. J. Nucl. Mater. 279, 1-18 (2000). doi: 10.1016/S0022-3115(99)00273-1http://doi.org/10.1016/S0022-3115(99)00273-1.
J.R. Lamarsh, A.J. Baratta, Introduction to nuclear engineering. 3rd edn, Prentice hall Upper Saddle River, NJ,2001, pp.409-413.
N.E. Todreas, M.S. Kazimi, Nuclear Systems 1 Thermal Hydraulic Fundamentals, MIT, Hemisphere Publishing Corporation, 1990, pp.53-57.
A.M. Ross, R.L. Stoute, Heat transfer coefficient between UO2 and Zircaloy-2, Atomic Energy of Canada Limited, Canada, 1962.
K. Shaheen, Dissertation (Royal Military College of Canada, Kingston, Ontario, Canada, 2011).
D.R. Olander, Fundamental aspects of nuclear reactor fuel elements. TID-26711-Pl (Atomic Energy Commission, Mumbai), 1985. doi: 10.2172/7343826http://doi.org/10.2172/7343826.
S. Leistikow, G. Schanz, Oxidation kinetics and related phenomena of Zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions. Nucl. Eng. Des. 103, 65-84 (1987). doi: 10.1016/0029-5493(87)90286-Xhttp://doi.org/10.1016/0029-5493(87)90286-X.
I.J. Hastings, P.J. Fehrenbach, R.R. Hosbons, Densification in irradiated UO2 fuel. J. Am. Ceram. Soc. 67(2), C-24-C-25, (1984),doi: 10.1111/j.1151-2916.1984.tb09613.xhttp://doi.org/10.1111/j.1151-2916.1984.tb09613.x.
D.L. Hagrman, G.A. Reymann, MATPRO-Version 11: A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel and Behavior. Idaho National Lab (INL), United States, NUREG/CR-0497, 1979 doi: 10.2172/6442256http://doi.org/10.2172/6442256.
N.E. Hoppe, Engineering model for zircaloy creep and growth. in International Topical Meeting on LWR Fuel Performance, Avignon (France), 1991.
K. Forsberg, A.R. Massih, Diffusion theory of fission gas migration in irradiated nuclear fuel UO2. J. Nuc. Maters. 135, 140-148 (1985). doi: 10.1016/0022-3115(85)90071-6http://doi.org/10.1016/0022-3115(85)90071-6
S.D. Beck, The diffusion of radioactive fission products from porous fuel elements. Battelle Memorial Inst., Columbus, Ohio, 1960. doi: 10.2172/4158094http://doi.org/10.2172/4158094.
R.J. White, M.O. Tucker, A new fission-gas release model. J. Nucl. Maters. 118(1), 1-38 (1983). doi: 10.1016/0022-3115(83)90176-9http://doi.org/10.1016/0022-3115(83)90176-9
O.V. Khoruzhii, S.Yu. Kourtchatov, V.V. Likhanskii, New model of equiaxed grain growth in irradiated UO2. J. Nucl. Maters. 265(1-2), 112-116 (1999). doi: 10.1016/S0022-3115(98)00632-1http://doi.org/10.1016/S0022-3115(98)00632-1
T. Ikonen, H. Loukusa, E. Syrjälahti et al., Module for thermomechanical modeling of LWR fuel in multiphysics simulations. Ann. Nucl. Energy 84, 111-121 (2015) doi: 10.1016/j.anucene.2014.11.004http://doi.org/10.1016/j.anucene.2014.11.004
E. Syrjälahti, V. Valtavirta, J. Kättö et al., Multiphysics simulations of fast transients in VVER-1000 and VVER-440 reactors. 11th International Conference on WWER Fuel Performance, Modeling and Experimental Support, (Varna, Bulgaria. 26 Sep - 3 Oct 2015).
K. Ivanov, M. Avramova, T. Blyth et al., Benchmark for uncertainty analysis in modeling (UAM) for design, operation and safety analysis of LWRs. Specification and Support Data for the Core Cases (Phase II) Version 1, (OECD NEA/NSC/DOC 2012) https://inis.iaea.org/collection/NCLCollectionStore/_Public/45/026/45026304.pdfhttps://inis.iaea.org/collection/NCLCollectionStore/_Public/45/026/45026304.pdf
G. Passage, A.S. Scheglov, V.N. Proselkov et al., Comparative calculations and operation-to-PIE data juxtaposition of the Zaporozhye NPP, WWER-1000 FA-E0325 fuel rods after 4 years of operation up to 49 MWd/kgU burnup, 6 International conference on WWER fuel performance, modelling and experimental support(Albena, Bulgaria, 19-23 Sep., 2005). https://inis.iaea.org/collection/NCLCollectionStore/_Public/37/098/37098340.pdfhttps://inis.iaea.org/collection/NCLCollectionStore/_Public/37/098/37098340.pdf
IAEA, Thermal Conductivity of Uranium Dioxide. TECHNICAL REPORTS SERIES, Vienna, 1966.
A. Medvedev, S. Bogatyr, V. Kouznetsov et al., Fuel rod behaviour at high burnup WWER fuel cycles. In: Proceedings of the Fourth International Conference WWER Fuel Modelling and Experimental Support, (Varna, Bulgaria, 29 Sep. - 3 Oct. 2003).
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution