1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
* houjie@sinap.ac.cn
Scan for full text
Xue-Jun Jiang, Wen Zhou, Jie Hou. Construction of fault diagnosis system for control rod drive mechanism based on knowledge graph and bayesian inference. [J]. Nuclear Science and Techniques 34(2):21(2023)
Xue-Jun Jiang, Wen Zhou, Jie Hou. Construction of fault diagnosis system for control rod drive mechanism based on knowledge graph and bayesian inference. [J]. Nuclear Science and Techniques 34(2):21(2023) DOI: 10.1007/s41365-023-01173-8.
Knowledge graph technology has distinct advantages in terms of fault diagnosis. In this study, the control rod drive mechanism (CRDM) of the liquid fuel thorium molten salt reactor (TMSR-LF1) was taken as the research object, and a fault diagnosis system was proposed based on knowledge graph. The Subject-Relation-Object triples are defined based on CRDM unstructured data, including design specification, operation and maintenance manual, alarm list, and other forms of expert experience. In this study, we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events. A three-layer robustly optimized bidirectional encoder representation from transformers (RBT3) pretraining approach combined with a text convolutional neural network (TextCNN) was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query. The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously. Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction. Additionally, a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically. Furthermore, the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system. Finally, a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed, making the CRDM fault diagnosis process intuitive and effective.
CRDMKnowledge graphFault diagnosisBayesian inferenceRBT3-TextCNNWeb interface
L.M. Zhang, Q. Li, J.D. Luo et al., A novel method for diagnosis and de-noising of control rod drive mechanism within floating nuclear reactor. Ocean Eng. 244, 110398 (2022). doi: 10.1016/j.oceaneng.2021.110398http://doi.org/10.1016/j.oceaneng.2021.110398.
Y. Wilhelm, P. Reimann, W. Gauchel et al., Overview on hybrid approaches to fault detection and diagnosis: Combining data-driven, physics-based and knowledge-based models. Procedia CIRP 99, 278-283 (2021). doi: 10.1016/j.procir.2021.03.041http://doi.org/10.1016/j.procir.2021.03.041.
W.J. Li, H. Li, S. Gu et al., Process fault diagnosis with model-and knowledge-based approaches: Advances and opportunities. Control Eng. Practice 105, 104637 (2020). doi: 10.1016/j.conengprac.2020.104637http://doi.org/10.1016/j.conengprac.2020.104637.
H. Qian, C.C. MA, Research on belief rule base of intelligent diagnosis expert system based on event-triggering mechanism in nuclear power plant. Atom. Energy Sci. Technol. 51(3), 485 (2017). doi: 10.7538/yzk.2017.51.03.0485http://doi.org/10.7538/yzk.2017.51.03.0485 (in Chinese)
W.L. Wang, M. Yang, P.H. Seong, Development of a rule-based diagnostic platform on an object-oriented expert system shell. Ann. Nucl. Energy 88, 252-264 (2016). doi: 10.1016/j.anucene.2015.11.008http://doi.org/10.1016/j.anucene.2015.11.008.
Y.K. Liu, X. Ai, A. Ayodeji et al., Enhanced graph-based fault diagnostic system for nuclear power plants. Nucl. Sci. Tech. 30, 174 (2019). doi: 10.1007/s41365-019-0708-xhttp://doi.org/10.1007/s41365-019-0708-x
Y. Zhao, Q. Zhang, C.L. Dong, Design and implementation of nuclear power plant fault diagnosis expert system based on DUCG. Atom. Energy Sci. Technol. 50(8), 1474 (2016). doi: 10.7538/yzk.2016.50.08.1474http://doi.org/10.7538/yzk.2016.50.08.1474 (in Chinese)
X. Ma, J. Wu, D.Z. Li, Fault diagnosis of nuclear power plant based on simplified signed directed graph with principal component analysis and support vector machine. 2019 Chinese Automat. Congr. (CAC). 3082-3087 (2019). doi: 10.1109/CAC48633.2019.8997001http://doi.org/10.1109/CAC48633.2019.8997001
L.L. Shi, H.G. Jia, Z.W. Zhou et al., Intelligent maintenance design of nuclear power system based on PHM. 2018 Prognostics Syst. Health Manage. Conf. (PHM-Chongqing).797-801(2018). doi: 10.1109/PHM-Chongqing.2018.00142http://doi.org/10.1109/PHM-Chongqing.2018.00142.
A. Hogan, E. Blomqvist, M. Cochez et al., Knowledge graphs. ACM Comput. Surv. 54(4), 1-37 (2021). doi: 10.1145/3447772http://doi.org/10.1145/3447772
L.Q. Su, Z.Y. Wang, Y.D. Ji et al., A survey based on knowledge graph in fault diagnosis, analysis and prediction: key technologies and challenges. 2020 Int. Conf. Artif. Intell. Comput. Eng. (ICAICE). 458-462 (2020). doi: 10.1109/ICAICE51518.2020.00096http://doi.org/10.1109/ICAICE51518.2020.00096.
J.F. Deng, T. Wang, Z.W. Wang et al., Research on event logic knowledge graph construction method of robot transmission system fault diagnosis. IEEE Access. 10, 17656-17673 (2022). doi: 10.1109/ACCESS.2022.3150409http://doi.org/10.1109/ACCESS.2022.3150409.
H.Y. Liu, R.Z. M, D.Y. Li et al., Machinery fault diagnosis based on deep learning for time series analysis and knowledge graphs. J. Sign Process Syst. 93, 1433-1455 (2021). doi: 10.1007/s11265-021-01718-3http://doi.org/10.1007/s11265-021-01718-3.
L.Q. Liu, B. Wang, F.Q. Ma et al., A concurrent fault diagnosis method of transformer based on graph convolutional network and knowledge graph. Front. Energy Res. 10, 837553 (2022). doi: 10.3389/fenrg.2022.837553http://doi.org/10.3389/fenrg.2022.837553.
A. Pakonen, T. Mätäsniemi, Ontology-based approach for analyzing nuclear overall I&C architectures. IECON 2021 – 47th Annu. Conf. IEEE Industrial Electr. Soc. 1-7 (2021). doi: 10.1109/IECON48115.2021.9589078http://doi.org/10.1109/IECON48115.2021.9589078.
X.Y. Liu, H.W. Wang, Knowledge graph construction and decision support towards transformer fault maintenance. 2021 IEEE 24th Int. Conf. Comput. Supported Cooperative Work Des. (CSCWD). 661-666 (2021). doi: 10.1109/CSCWD49262.2021.9437847http://doi.org/10.1109/CSCWD49262.2021.9437847
X.G. Ma, Knowledge graph construction and application in geosciences: A review. Comput. & Geosci. 16,105082 (2022). doi: 10.1016/j.cageo.2022.105082http://doi.org/10.1016/j.cageo.2022.105082
V.R.S. Kumar, A.M. Khamis, S.R. Fiorini et al., Ontologies for industry 4.0. knowl. Eng. Rev., 34, e37 (2019). doi: 10.1017/S0269888919000109http://doi.org/10.1017/S0269888919000109
L.R. Daniel, N.F. Natalya, A.M. Mark, Protégé: A Tool for Managing and Using Terminology in Radiology Applications. J. Digit. Imaging 20, 34–46 (2007). doi: 10.1007/s10278-007-9065-0http://doi.org/10.1007/s10278-007-9065-0
H. Guan, D. Xie, Research on building of acupuncture domain ontology. IEEE Int. Conf. e-Health Netw., Appl. Serv., Healthcom. pp. 87-90 (2017). doi: 10.1109/HealthCom.2017.8210821http://doi.org/10.1109/HealthCom.2017.8210821
Q. Chen, Z. Zhuo, W. Wang, BERT for joint intent classification and slot filling. arXiv preprint arXiv:1902.10909 (2019). doi: 10.48550/arXiv.1902.10909http://doi.org/10.48550/arXiv.1902.10909
J. Devlin, M.W. Chang, K. Lee et al., Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018). doi: 10.48550/arXiv.1810.04805http://doi.org/10.48550/arXiv.1810.04805
Y. Kim, Convolutional Neural Networks for Sentence Classification. arXiv preprint arXiv:1408.5882 (2014). doi: 10.48550/arXiv.1408.5882http://doi.org/10.48550/arXiv.1408.5882
Y.M. Cui, W.X. Che, T. Liu et al., Pre-training with whole word masking for Chinese BERT. IEEE/ACM Trans. Audio Speech Lang. Process. 29, 3504-3514 (2021). doi: 10.1109/TASLP.2021.3124365http://doi.org/10.1109/TASLP.2021.3124365
L. Srinivasan, J. Scharnagle, K. Schilling, Analysis of WebSockets as the new age protocol for remote robot tele-operation. IFAC Proc. 46(29), 83-88 (2013). doi: 10.3182/20131111-3-KR-2043.00032http://doi.org/10.3182/20131111-3-KR-2043.00032
T.T. Zhou, T. Han, E.L. Droguett, Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework. Reliab. Eng. Syst. Saf. 224,108525 (2022). doi: 10.1016/j.ress.2022.108525http://doi.org/10.1016/j.ress.2022.108525
X.Z. Li, Q.X. Zhang, H.Y. Tan et al., Fast nuclide identification based on a sequential Bayesian method. Nucl. Sci. Tech. 32, 143 (2021). doi: 10.1007/s41365-021-00982-zhttp://doi.org/10.1007/s41365-021-00982-z
E. Alhassan, D. Rochman, A. Vasiliev et al., Iterative Bayesian Monte Carlo for nuclear data evaluation. Nucl. Sci. Tech. 33, 50 (2022). doi: 10.1007/s41365-022-01034-whttp://doi.org/10.1007/s41365-022-01034-w
J.D. Wang, Z.J. Yang, J.J. Su et al., Root-cause analysis of occurring alarms in thermal power plants based on Bayesian networks. Int. J. Electr. Power Energy Syst. 103, 67-74 (2018). doi: 10.1016/j.ijepes.2018.05.029http://doi.org/10.1016/j.ijepes.2018.05.029
V. Agrawal, B. K. Panigrahi, P. M. V. Subbarao, Intelligent decision support system for detection and root cause analysis of faults in coal mills. IEEE Trans. Fuzzy Syst. 25(4), 934-944 (2017). doi: 10.1109/TFUZZ.2016.2587325http://doi.org/10.1109/TFUZZ.2016.2587325
H.M. Zhao, J. Liu, H.Y. Chen et al., An extension to the noisy-or function to resolve the ‘Explaining Away’ deficiency for practical Bayesian network problems. IEEE Trans. Knowl. Data Eng. 31(12), 2441-2445 (2019). doi: 10.1109/TKDE.2019.2891680http://doi.org/10.1109/TKDE.2019.2891680
Y.J. Gu, N. Yang, D.C. Chen et al., Study on intelligent fault diagnosis of steam turbines using fault causality information. Noise Vib. Control. 39(4), 12-19 (2019). doi: 10.3969/j.issn.1006-1355.2019.04.003http://doi.org/10.3969/j.issn.1006-1355.2019.04.003 (in Chinese)
C. Bielza, P. Larranaga, Bayesian networks in neuroscience: a survey. Front. Comput. Neurosci. 8,1662-5188 (2014). doi: 10.3389/fncom.2014.00131http://doi.org/10.3389/fncom.2014.00131
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution