1.School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu 233030, China
2.School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
† 120210067@aufe.edu.cn
Scan for full text
Xue-Neng Cao, Xian-Xian Zhou, Ming Fu, et al. Research on the influence of quadrupole deformation and continuum effects on the exotic properties of 15,17,19B with the complex momentum representation method. [J]. Nuclear Science and Techniques 34(2):25(2023)
Xue-Neng Cao, Xian-Xian Zhou, Ming Fu, et al. Research on the influence of quadrupole deformation and continuum effects on the exotic properties of 15,17,19B with the complex momentum representation method. [J]. Nuclear Science and Techniques 34(2):25(2023) DOI: 10.1007/s41365-023-01177-4.
The properties of exotic nuclei are the focus of the present research. Two-neutron halo structures of neutron-rich ,17,19,B were experimentally confirmed. We studied the formation mechanism of halo phenomena in ,17,19,B using the complex momentum representation method applied to deformation and continuum coupling. By examining the evolution of the weakly bound and resonant levels near the Fermi surface,s,–,d, orbital reversals and certain prolate deformations were observed. In addition, by analyzing the evolution of the occupation probabilities and density distributions occupied by valence neutrons, we found that the ground state of ,15,B did not exhibit a halo and the ground states of ,17,B and ,19,B exhibited halos at 0.6≤,β,2,≤0.7 and 0.3≤,β,2,≤0.7, respectively. The low-,l, components in the valence levels that are weakly bound or embedded in the continuous spectrum lead to halo formation.
Quadrupole deformationResonant statesComplex momentum representationHalo
W. Nan, B. Guo, C. J. Lin et al., First proof-of-principle experiment with the post-accelerated isotope separator online beam at BRIF: measurement of the angular distribution of 23Na + 40Ca elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). doi: 10.1007/s41365-021-00889-9http://doi.org/10.1007/s41365-021-00889-9
Z. P. Gao, Y. J. Wang, H. L. Lü et al., Machine learning of nuclear mass. Nucl. Sci. Tech. 32, 109 (2021). doi: 10.1007/s41365-021-00889-9http://doi.org/10.1007/s41365-021-00889-9
L. Zhou, S. M. Wang, D. Q. Fang, et al. Recent progress in two-proton radioactivity measurement. Nucl. Sci. Tech. 33, 105 (2022). doi: 10.1007/s41365-022-01091-1http://doi.org/10.1007/s41365-022-01091-1
S. W. Bai, X. F. Yang, S. J. Wang, et al. Commissioning of high-resolution collinear laser spectroscopy apparatus with laser ablation ion source. Nucl. Sci. Tech. 33, 9 (2022). doi: 10.1007/s41365-022-00992-5http://doi.org/10.1007/s41365-022-00992-5
I. Tanihata, H. Hamagaki, O. Hashimoto, et al., Measurements of interaction cross-sections and nuclear radii in the light p-Shell Region. Phys. Rev. Lett. 55, 2676 (1985). doi: 10.1103/PhysRevLett.55.2676http://doi.org/10.1103/PhysRevLett.55.2676
P.G. Hansen, B. Jonson, The neutron halo of extremely neutron-rich nuclei. Europhys. Lett. 4, 409 (1987). http://iopscience.iop.org/0295-5075/4/4/005http://iopscience.iop.org/0295-5075/4/4/005
J. Meng, H. Toki, S. Zhou et al., Relativistic continuum hartree bogoliubov theory for the ground-state properties of exotic nuclei. Prog. Part. Nucl. Phys. 57, 470-563 (2006). doi: 10.1016/j.ppnp.2005.06.001http://doi.org/10.1016/j.ppnp.2005.06.001
T.T. Sun, L. Qian, C. Chen et al., Green’s function method for the single-particle resonances in a deformed Dirac equation. Phys. Rev. C 101, 014321 (2020). doi: 10.1103/PhysRevC.101.014321http://doi.org/10.1103/PhysRevC.101.014321
T. Minamisono, T. Ohtsubo, I. Minami et al., Proton halo of 8B disclosed by its giant quadrupole moment. Phys. Rev. Lett. 69, 2058 (1992). doi: 10.1103/PhysRevLett.69.2058http://doi.org/10.1103/PhysRevLett.69.2058
T. Aumann, D. Aleksandrov, L. Axelsson et al., Continuum excitations in 6H. Phys. Rev. C 59, 1252 (1999). doi: 10.1103/PhysRevC.59.1252http://doi.org/10.1103/PhysRevC.59.1252
J. Wang, A. Galonsky, J.J. Kruse et al., Dissociation of 6H. Phys. Rev. C 65, 034306 (2002). doi: 10.1103/PhysRevC.65.034306http://doi.org/10.1103/PhysRevC.65.034306
T. Nakamura, A.M. Vinodkumar, T. Sugimoto et al. Observation of strong low-lying E1 strength in the two-neutron halo nucleus 11Li. Phys. Rev. Lett. 96, 252502 (2006). doi: 10.1103/PhysRevLett.96.252502http://doi.org/10.1103/PhysRevLett.96.252502
Y. Kondo, T. Nakamura, Y. Satou et al., Low-lying intruder state of the unbound nucleus 13B. Phys. Lett. B 690, 245 (2010). doi: 10.1016/j.physletb.2010.05.031http://doi.org/10.1016/j.physletb.2010.05.031
A. Corsi, Y. Kubota, J. Casal et al., Structure of 13Be probed via quasi-free scatterin. Phys. Lett. B 797, 134843 (2019). doi: 10.1016/j.physletb.2019.134843http://doi.org/10.1016/j.physletb.2019.134843
I. Tanihata, T. Kobayashi, O. Yamakawa et al., Measurement of interaction cross sections using isotope beams of Be and B and isospin dependence of nuclear radii. Phys. Lett. B 206, 592 (1985). doi: 10.1016/0370-2693(88)90702-2http://doi.org/10.1016/0370-2693(88)90702-2
M. Fukuda, T. Ichihara, N. Inabe et al., the neutron halo in 11 is studied via reaction cross sections. Phys. Lett. B 268, 339 (1991). doi: 10.1016/0370-2693(91)91587-Lhttp://doi.org/10.1016/0370-2693(91)91587-L
K. Tanaka, T. Yamaguchi, T. Suzuki et al., Observation of a large reaction cross-section in the rip-Line nucleus 22C. Phys. Rev. Lett. 104, 062701 (2010). doi: 10.1103/PhysRevLett.104.062701http://doi.org/10.1103/PhysRevLett.104.062701
Y. Togano, T. Nakamura, Y. Kondo et al., Interaction cross-section study of the two-neutron halo nucleus 22C. Phys. Lett. B 761, 412 (2016). doi: 10.1016/j.physletb.2016.08.062http://doi.org/10.1016/j.physletb.2016.08.062
Z.H. Yang, Y. Kubota, A. Corsi et al., Quasifree neutron knockout reaction revealed a small s-orbital component in the borromean nucleus 17B. Phys. Rev. Lett. 126, 082501 (2021). doi: 10.1103/PhysRevLett.126.082501http://doi.org/10.1103/PhysRevLett.126.082501
K. J. Cook, T. Nakamura, Y. Kondo, et al., Halo structure of the neutron-dripline nucleus 19B. Phys. Rev. Lett. 124 212503 (2020). doi: 10.1103/PhysRevLett.124.212503http://doi.org/10.1103/PhysRevLett.124.212503
N. Kobayashi, T. Nakamura, Y. Kondo et al., Observation of a p-wave one-neutron halo configuration in 37Mg. Phys. Rev. Lett. 112, 242501 (2014). doi: 10.1103/PhysRevLett.112.242501http://doi.org/10.1103/PhysRevLett.112.242501
T. Nakamura, N. Kobayashi, Y. Kondo et al., Deformation-driven p-wave halos at the Drip Line: 31Ne. Phys. Rev. Lett. 112, 142501 (2014). doi: 10.1103/PhysRevLett.112.142501http://doi.org/10.1103/PhysRevLett.112.142501
S. Bagchi, R. Kanungo, Y. K. Tanaka et al., The two-neutron halo is unveiled in 29F. Phys. Rev. Lett. 124, 222504 (2020). doi: 10.1103/PhysRevLett.124.222504http://doi.org/10.1103/PhysRevLett.124.222504
I. Tanihata, H. Savajols, R. Kanungo, Recent experimental progress in nuclear halo structure studies. Prog. Part. Nucl. Phys. 68, 215 (2013). doi: 10.1016/j.ppnp.2012.07.001http://doi.org/10.1016/j.ppnp.2012.07.001
S.G. Zhou, J. Meng, P. Ring et al., Neutron halo in deformed nuclei. Phys. Rev. C 82, 011301(R) (2010). doi: 10.1103/PhysRevC.82.011301http://doi.org/10.1103/PhysRevC.82.011301
X.X. Sun, J. Zhao, S.G. Zhou, Shrunk halo and quenched shell gap at N=16 in 22C: Inversion of sd. Phys. Lett. B 785, 530 (2018). doi: 10.1016/j.physletb.2018.08.071http://doi.org/10.1016/j.physletb.2018.08.071
H.W. Hammer, L. Platter, Efimov states in nuclear and particle physics. Ann. Rev. Nucl. Part. Sci. 60, 207 (2010). doi: 10.1146/annurev.nucl.012809.104439http://doi.org/10.1146/annurev.nucl.012809.104439
G. Hagen, P. Hagen, H.W. Hammer et al., Efimov physics around the neutron-rich 60Ca isotope. Phys. Rev. Lett. 111, 132501 (2013). doi: 10.1103/PhysRevLett.111.132501http://doi.org/10.1103/PhysRevLett.111.132501
I. Hamamoto, Examining possible neutron-halo nuclei heavier than 37Mg. Phys. Rev. C 95, 044325 (2017). doi: 10.1103/PhysRevC.95.044325http://doi.org/10.1103/PhysRevC.95.044325
D. Hove, E. Garrido, P. Sarriguren et al., Emergence of clusters: Halos, efimov states, and experimental signals. Phys. Rev. Lett. 120, 052502 (2018). doi: 10.1103/PhysRevLett.120.052502http://doi.org/10.1103/PhysRevLett.120.052502
T. Suzuki, R. Kanungo, O. Bochkarev et al., nuclear radii of 17,19B and 14Be. Nuclear Phys. A 658, 313 (1999). doi: 10.1016/S0375-9474(99)00376-0http://doi.org/10.1016/S0375-9474(99)00376-0
T. Suzuki, Y. Ogawa, M. Chiba, et al., Momentum Distribution of 15B Fragments from the Breakup of 17B. Phys. Rev. Lett. 89, 012501 (2002). doi: 10.1103/PhysRevLett.89.012501http://doi.org/10.1103/PhysRevLett.89.012501
National Nuclear Data Center, http://www.nndc.bnl.govhttp://www.nndc.bnl.gov.
Y. Kondo, T. Nakamura, N. Aoi, et al. In-beam γ-ray spectroscopy of neutron-rich boron isotopes 15,17B via inelastic scattering at 12C. Phys. Rev. C 71, 044611 (2005). doi: 10.1103/PhysRevC.71.044611http://doi.org/10.1103/PhysRevC.71.044611
X. X. Sun, Deformed two-neutron halo in 19B. Phys. Rev. C 103, 054315 (2021). doi: 10.1103/PhysRevC.103.054315http://doi.org/10.1103/PhysRevC.103.054315
E. Sauvan, F. Carstoiu, N. A. Orr, et al., One-neutron removal reactions on light neutron-rich nuclei. Phys. Rev. C 69, 044603 (2004). doi: 10.1103/PhysRevC.69.044603http://doi.org/10.1103/PhysRevC.69.044603
Y. Yamaguchi, C. Wu, T. Suzuki et al., Density distribution of 17B from the reaction cross-section measuremen. Phys. Rev. C 70, 054320 (2004). doi: 10.1103/PhysRevC.70.054320http://doi.org/10.1103/PhysRevC.70.054320
M. Wang, G. Audi, F. Kondev, et al. AME2016 atomic mass evaluation (II). Tables, graphs, and References. Chin. Phys. C 41, 030003 (2017). doi: 10.1088/1674-1137/41/3/030003http://doi.org/10.1088/1674-1137/41/3/030003
Z. Dombrádi, Z. Elekes, R. Kanungo, et al., Decoupling of valence neutrons from the core in 17B. Phys. Lett. B 621, 81 (2005). doi: 10.1016/j.physletb.2005.06.031http://doi.org/10.1016/j.physletb.2005.06.031
A. Estradé, R. Kanungo, W. Horiuchi, et al., Proton radii of 12C17B define a thick neutron surface in 17B. Phys. Rev. Lett. 113, 132501 (2014). doi: 10.1103/PhysRevLett.113.132501http://doi.org/10.1103/PhysRevLett.113.132501
A. Ozawa, T. Suzuki, I. Tanihata, Nuclear size and related topics. Nucl. Phys. A 693, 32 (2001). doi: 10.1016/S0375-9474(01)01152-6http://doi.org/10.1016/S0375-9474(01)01152-6
H.T. Fortune, R. Sherr, Matter radii and wave function admixtures in 2n halo nuclei. Eur. Phys. J. A 48, 103 (2012). doi: 10.1140/epja/i2012-12103-9http://doi.org/10.1140/epja/i2012-12103-9
Y. Kanada-En’yo, H. Horiuchi, Neutron-rich B isotopes studied with antisymmetrized molecular dynamics. Phys. Rev. C 52, 647 (1995). doi: 10.1103/PhysRevC.52.647http://doi.org/10.1103/PhysRevC.52.647
Y. Kanada-En’yo, H. Horiuchi, Structure of light unstable nuclei studied with antisymmetrized molecular dynamics. Prog. Theor. Phys. Suppl. 142, 205 (2001). doi: 10.1143/PTPS.142.205http://doi.org/10.1143/PTPS.142.205
L. Gaudefroy, W. Mittig, N.A. Orr et al., Direct mass measurements of 19B, 22C, 29F, 31Ne, 34Na, and other light-exotic nuclei. Phys. Rev. Lett. 109, 202503 (2012). doi: 10.1103/PhysRevLett.109.202503http://doi.org/10.1103/PhysRevLett.109.202503
Y.T. Wang, T.T. Sun, Searching for single-particle resonances with the Greens function method. Nucl. Sci. Tech. 32, 46 (2021). doi: 10.1007/s41365-021-00884-0http://doi.org/10.1007/s41365-021-00884-0
X.X. Shi, M. Shi, Z.M. Niu et al., Probing resonances in deformed nuclei using the complex-scaled Green’s function method. Phys. Rev. C 94, 024302 (2016). doi: 10.1103/PhysRevC.94.024302http://doi.org/10.1103/PhysRevC.94.024302
N. Li, M. Shi, J.Y. Guo, et al. Probing resonances of the dirac equation with complex momentum representation. Phys. Rev. Lett. 117, 062502 (2016). doi: 10.1103/PhysRevLett.117.062502http://doi.org/10.1103/PhysRevLett.117.062502
Z. Fang, M. Shi, J.Y. Guo et al., Probing resonances in the Dirac equation with quadrupole-deformed potentials using a complex momentum representation method. Phys. Rev. C 95, 024311 (2017). doi: 10.1103/PhysRevC.95.024311http://doi.org/10.1103/PhysRevC.95.024311
Y. J. Tian, Q. Liu, T. H. Heng et al., Research on halo in 31Ne using the complex momentum representation method. Phys. Rev. C 95, 064329 (2017). doi: 10.1103/PhysRevC.95.064329http://doi.org/10.1103/PhysRevC.95.064329
K. M. Ding, M. Shi, J.Y. Guo, et al., Resonant-continuum relativistic mean field plus BCS in a complex momentum representation. Phys. Rev. C 98, 014316 (2018). doi: 10.1103/PhysRevC.98.014316http://doi.org/10.1103/PhysRevC.98.014316
M. Shi, Z. M. Niu, H.Z. Liang, Combination of complex momentum representation and Green’s function methods in the relativistic mean-field theory. Phys. Rev. C 97, 064301 (2018). doi: 10.1103/PhysRevC.97.064301http://doi.org/10.1103/PhysRevC.97.064301
Y. Wang, Z. M. Niu, M. Shi et al. Probing the resonance of Dirac particles in the relativistic point-coupling model using the complex momentum representation method. J. Phys. G 46, 125103 (2019). doi: 10.1088/1361-6471/ab4a9bhttp://doi.org/10.1088/1361-6471/ab4a9b
X.N. Cao, Q. Liu, Z.M. Niu et al., Systematic studies of the influence of single-particle resonances on neutron halo and skin in the relativistic-mean-field and complex-momentum-representation methods. Phys. Rev. C 99, 024314 (2019). doi: 10.1103/PhysRevC.99.024314http://doi.org/10.1103/PhysRevC.99.024314
X.N. Cao, M. Fu, X.X. Zhou et al. Research on the exotic properties of nuclei from light to medium mass regions. Eur. Phys. J Plus 137, 906 (2022). doi: 10.1140/epjp/s13360-022-03http://doi.org/10.1140/epjp/s13360-022-03
X.N. Cao, Q. Liu, J.Y. Guo, Prediction of halo structure in nuclei heavier than 37Mg with the complex momentum representation method. Phys. Rev. C 99, 014309 (2019). doi: 10.1103/PhysRevC.99.014309http://doi.org/10.1103/PhysRevC.99.014309
Y.X. Luo, Q. Liu, J.Y. Guo et al. Investigation of the exotic structure in 34Na using complex momentum representation combined with Green’s function method. J. Phys. G 47, 085105 (2020). doi: 10.1088/1361-6471/ab92e2http://doi.org/10.1088/1361-6471/ab92e2
Y.X. Luo, Q. Liu, J.Y. Guo, Role of quadrupole deformation and continuum effects in the "island of inversion" nuclei 28,29,31F. Phys. Rev. C 104, 014307 (2021). doi: 10.1103/PhysRevC.104.014307http://doi.org/10.1103/PhysRevC.104.014307
S.Y. Zhai, X.N. Cao, J.Y. Guo, Research on the deformed halo in 29F with complex momentum representation method. J. Phys. G 49 065101 (2022). doi: 10.1088/1361-6471/ac5dfdhttp://doi.org/10.1088/1361-6471/ac5dfd
X. N. Cao, Q. Liu, J. Y. Guo, Interpretation of halo in 19C with complex momentum representation method. J. Phys. G 45, 085105 (2018). doi: 10.1088/1361-6471/aad0bfhttp://doi.org/10.1088/1361-6471/aad0bf
X.W. Wang, J.Y. Guo, Research on deformed exotic nuclei by relativistic mean field theory in complex momentum representation. Phys. Rev. C 104, 044315 (2021). doi: 10.1103/PhysRevC.104.044315http://doi.org/10.1103/PhysRevC.104.044315
T.H. Heng, Y.W. Chu, Properties of Titanium isotopes in complex momentum representation within relativistic mean-field theory. Nucl. Sci. Tech. 33, 117 (2022). doi: 10.1007/s41365-022-01098-8http://doi.org/10.1007/s41365-022-01098-8
I. Hamamoto, One-particle resonant levels in a deformed potential. Phys. Rev. C 72, 024301 (2005). doi: 10.1103/PhysRevC.72.024301http://doi.org/10.1103/PhysRevC.72.024301
I. Hamamoto, Deformed halo of F20. Phys. Lett. B 814, 136116 (2021). doi: 10.1016/j.physletb.2021.136116http://doi.org/10.1016/j.physletb.2021.136116
K. Bennaceur, J. Dobaczewski, M. Ploszajczak, Pairing anti-halo effect. Phys. Lett. B 496, 154 (2000). doi: 10.1016/S0370-2693(00)01292-2http://doi.org/10.1016/S0370-2693(00)01292-2
H. Nakada and K. Takayama, Intertwined effects of pairing and deformation on neutron halos in magnesium isotopes. Phys. Rev. C 98, 011301(R) (2018). doi: 10.1103/PhysRevC.98.011301http://doi.org/10.1103/PhysRevC.98.011301
T. Suzuki, T. Otsuka, Structure of two-neutron halo in light exotic nuclei. Few-Body Syst. 62, 32 (2021). doi: 10.1007/s00601-021-01612-5http://doi.org/10.1007/s00601-021-01612-5
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution