1.School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610200, China
panqingquan@sjtu.edu.cn,
xiaojingliu@sjtu.edu.cn
Scan for full text
Qing-Quan Pan, Qing-Fei Zhao, Lian-Jie Wang, et al. Rapid diagnostic method for transplutonium isotope production in high flux reactors. [J]. Nuclear Science and Techniques 34(3):44(2023)
Qing-Quan Pan, Qing-Fei Zhao, Lian-Jie Wang, et al. Rapid diagnostic method for transplutonium isotope production in high flux reactors. [J]. Nuclear Science and Techniques 34(3):44(2023) DOI: 10.1007/s41365-023-01185-4.
Transplutonium isotopes are scarce and need to be produced by irradiation in high flux reactors. However, their production is inefficient, and optimization studies are necessary. This study analyzes the physical nature of transplutonium isotope production using ,252,Cf,244,Cm,242,Cm, and ,238,Pu as examples. Traditional methods based on the Monte Carlo burnup calculation have the limitations of many calculations and cannot analyze the individual energy intervals in detail; thus, they cannot support the refined evaluation, screening, and optimization of the irradiation schemes. After understanding the physical nature and simplifying the complexity of the production process, we propose a rapid diagnostic method for evaluating radiation schemes based on the concepts "single energy interval value (SEIV)" and "Energy Spectrum Total Value (ESTV)". The rapid diagnostic method not only avoids tedious burnup calculations but also provides a direction for optimization. The optimal irradiation schemes for producing ,252,Cf,244,Cm,242,Cm, and ,238,Pu are determined based on a rapid diagnostic method. Optimal irradiation schemes can significantly improve production efficiency. Compared with the initial scheme, the optimal scheme improved the production efficiency of ,238,Pu by 7.41 times; ,242,Cm, 11.98 times; ,244,Cm, 65.20 times; and ,252,Cf, 15.08 times. Thus, a refined analysis of transplutonium isotope production is conducted and provides a theoretical basis for improving production efficiency.
Transplutonium isotopeRapid diagnostic methodProduction optimizationSingle energy interval valueEnergy spectrum total value
J. Bigelow, B. Corbett, L. King et al., Production of transplutonium elements in the High Flux Isotope Reactor. ACS Symposium series 161, transplutonium elements-production and recovery. American Chemical Society, Washington, 3-18 (1981). doi: 10.1021/bk-1981-0161.ch001http://doi.org/10.1021/bk-1981-0161.ch001
J. Even, X. Chen, A. Soylu et al., The NEXT project: Towards production and investigation of neutron-rich heavy nuclides. Atoms 10, 59 (2022). doi: 10.3390/atoms10020059http://doi.org/10.3390/atoms10020059
T. Dickel, A. Kankainen, A. Spataru et al., Multi-nucleon transfer reactions at ion catcher facilities—A new way to produce and study heavy neutron-rich nuclei. J. Phys. Conference Series 1668, 012012 (2020). doi: 10.1088/1742-6596/1668/1/012012http://doi.org/10.1088/1742-6596/1668/1/012012
G. Savard, M. Brodeur, J. Clark et al., The N = 126 factory: A new facility to produce very heavy neutron-rich isotopes. Nucl. Instrum. Meth. Phys. Res. Sect. B 463, 258-261 (2020). doi: 10.1016/j.nimb.2019.05.024http://doi.org/10.1016/j.nimb.2019.05.024
Researchers urge action on medical-isotope shortage. Nature 459, 1045 (2009). doi: 10.1038/4591045bhttp://doi.org/10.1038/4591045b
J. Tollefson, Reactor shutdown threatens world’s medical-isotope supply. Nature 2016. doi: 10.1038/nature.2016.20577http://doi.org/10.1038/nature.2016.20577
P. Gould, Medical isotope supplies dwindle. Nature 2010. doi: 10.1038/news.2010.70http://doi.org/10.1038/news.2010.70
P. Gould, Medical isotope shortage reaches crisis level. Nature 460, 312-313 (2019). doi: 10.1038/460312ahttp://doi.org/10.1038/460312a
S. Hogle, C.W. Alexander, J.D. Burns et al., Sensitivity studies and experimental evaluation for optimizing transcurium isotope production. Nucl. Sci. Eng. 185, 473-483 (2017). doi: 10.1080/00295639.2016.1272973http://doi.org/10.1080/00295639.2016.1272973
T. Tacev, B. Ptackova, V. Stmad, 252Cf versus conventional gamma radiation in the brachytherapy of advanced cervical carcinoma. Strahlenther Onkol 179, 379-384 (2003). doi: 10.1007/s00066-003-1005-4http://doi.org/10.1007/s00066-003-1005-4
M. Yu, S. Wang, The investigation and calculation of the transmutation paths for the production of 252Cf in fast reactors. Ann. Nucl. Energy 136, 107006 (2020). doi: 10.1016/j.anucene.2019.107006http://doi.org/10.1016/j.anucene.2019.107006
R.C. Martin, J.B. Knauer, P.A. Balo, Production, distribution and application of Californium-252 neutron sources. Appl. Radiat. Isotopes 53, 785-792 (2000). doi: 10.1016/S0969-8043(00)00214-1http://doi.org/10.1016/S0969-8043(00)00214-1
Z. Shen, X. Ouyang, H. Gao, Demand for aerospace materials and technology for China’s deep space exploration. Aerospace Mater. Technol. 51(05) (2021). https://doc.taixueshu.com/journal/20210079yhclgy.htmlhttps://doc.taixueshu.com/journal/20210079yhclgy.html
S. Hogle. Optimization of transcurium isotope production in the High Flux Isotope Reactor. Doctoral dissertations at University of Tennessee, Knoxville, 2012. https://trace.tennessee.edu/utk_graddiss/1529/https://trace.tennessee.edu/utk_graddiss/1529/
S. Thompson, A. Chiorso, G. Seaborg, The new element californium (atomic number 98). Phys. Rev. 77, 838 (1950). doi: 10.1103/PhysRev.80.790http://doi.org/10.1103/PhysRev.80.790
P.R. Fields, M.H. Studier, H. Diamond et al., Transplutonium elements in thermonuclear test debris. Phys. Rev. 102, 180 (1956). doi: 10.1103/PhysRev.102.180http://doi.org/10.1103/PhysRev.102.180
D. Schönenbach, F. Berg, M. Breckheimer et al., Development, characterization, and first application of a resonant laser secondary neutral mass spectrometry setup for the research of plutonium in the context of long-term nuclear waste storage. Analytical and Bioanalytical Chemistry 413, 3987-3997 (2021). doi: 10.1007/s00216-021-03350-3http://doi.org/10.1007/s00216-021-03350-3
K. Dockx, E.C. Thomas, S. Thierry, ISOL Technique for the Production of 225 Ac at CERN-MEDICIS. Journal of Medical Imaging and Radiation Sciences, 50(4), 92 (2019). doi: 10.1016/j.jmir.2019.11.077http://doi.org/10.1016/j.jmir.2019.11.077
P. Schmor. Review of Cyclotrons for the Production of Radioactive Isotopes for Medical and Industrial Applications. Reviews of Accelerator Science and Technology 4, 103-116 (2011). doi: 10.1142/9789814383998_0005http://doi.org/10.1142/9789814383998_0005
Y.S Lutostansky, V.I. Lyashuk. Production of transuranium nuclides in pulsed neutron fluxes from thermonuclear explosions. JETP Letters 107, 79-85 (2018). doi: 10.1134/S0021364018020108http://doi.org/10.1134/S0021364018020108
S. Hogle, G.I. Maldonado, C. Alexander, Increasing transcurium production efficiency through directed resonance shielding. Ann. Nucl. Energy 60, 267-273 (2013). doi: 10.1016/j.anucene.2013.05.018http://doi.org/10.1016/j.anucene.2013.05.018
Y. Hou, Analysis of the world supply market for Californium-252 neutron source. China Nuclear Industry 05, 24-26 (2015). https://www.docin.com/p-1595472449.htmlhttps://www.docin.com/p-1595472449.html
S.M. Robinson, D.E. Benker, E.D. Collins et al., Production of 252Cf and other transplutonium isotopes at Oak Ridge National Laboratory. Radiochimica Acta 108(9), 737-746 (2020). doi: 10.1515/ract-2020-0008http://doi.org/10.1515/ract-2020-0008
D. Chandler, B.R. Betzler, E.E. Davidson et al., Modeling and simulation of a High Flux Isotope Reactor representative core model for updated performance and safety basis assessments. Nucl. Eng. Des. 366, 110752 (2020). doi: 10.1016/j.nucengdes.2020.110752http://doi.org/10.1016/j.nucengdes.2020.110752
C. Samantha, H. Riley, Campaign 78 - Production of 252Cf and the Recovery of Curium Feed Material at the Radiochemical Engineering Development Center, ORNL/TM-2020/1839, 2021. https://www.osti.gov/biblio/1782041https://www.osti.gov/biblio/1782041
G. Koehly, J. Bourges, c. Madic et al., The production of transplutonium elements in France. ACS Symposium Series 161, 19-40 (1981). doi: 10.1021/bk-1981-0161.ch002http://doi.org/10.1021/bk-1981-0161.ch002
Y.A. Karelin, Y.N. Gordeev, V.T. Filimonov et al., Radionuclide production at the Russia State scientific center, RIAR. Appl. Radiat. Isotopes 48, 1585-1589 (1997). doi: 10.1016/S0969-8043(97)00159-0http://doi.org/10.1016/S0969-8043(97)00159-0
A. Zhang, C. Yu, S. Xia et al., Analysis of producing 238Pu as a byproduct in an MSFR. Ann. Nucl. Energy 154, 108104 (2021). doi: 10.1016/j.anucene.2020.108104http://doi.org/10.1016/j.anucene.2020.108104
K. Ma, C. Yu, J. Chen et al., Transmutation of 135Cs in a single-fluid double-zone thorium molten salt reactor. International Journal of Energy Research 1-12, (2020). doi: 10.1002/er.6235http://doi.org/10.1002/er.6235
K. Ma, C. Yu, X. Cai et al., Transmutation of 129I in a single-fluid double-zone thorium molten salt reactor. Nucl. Sci. Tech. 31, 10 (2020). doi: 10.1007/s41365-019-0720-1http://doi.org/10.1007/s41365-019-0720-1
J.B. Roberto, C.W. Alexander, R.A. Boll et al., Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 944, 99-116 (2015). doi: 10.1016/j.nuclphysa.2015.06.009http://doi.org/10.1016/j.nuclphysa.2015.06.009
M. Jin, S. Xu, G. Yang et al., Yield of long-lived fission product transmutation using proton-, deuteron-, and alpha particle-induced spallation. Nucl. Sci. Tech. 32, 96 (2021). doi: 10.1016/j.anucene.2020.108104http://doi.org/10.1016/j.anucene.2020.108104
H. Meng, Y. Yang, Z. Zhao et al., Physical studies of minor actinide transmutation in the accelerator-driven sub-critical system. Nucl. Sci. Tech. 30, 91 (2021). doi: 10.1007/s41365-019-0623-1http://doi.org/10.1007/s41365-019-0623-1
A. Qaaod, V. Gulik, 226Ra irradiation to produce 225Ac and 213Bi in an Accelerator-Driven System Reactor. Nucl. Sci. Tech. 31, 44 (2020). doi: 10.1007/s41365-020-00753-2http://doi.org/10.1007/s41365-020-00753-2
T. Atsunori, O. Masaki, Numerical analysis on element creation by nuclear transmutation of fission products. Nucl. Sci. Tech. 26, S10311 (2015). doi: 10.13538/j.1001-8042/nst.26.S10311http://doi.org/10.13538/j.1001-8042/nst.26.S10311
Y. Nagame, M. Hirata, Production and properties of tansuranium elements. Radiochimica Acta 99, 377-393 (2021). doi: 10.1524/ract.2011.1853http://doi.org/10.1524/ract.2011.1853
M.B. Chadwick, M. Herman, P. Oblozinsky et al., ENDF/B-VII.1 nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data. Nuclear Data Sheets 112(12), 2887-2996 (2011). doi: 10.1016/j.nds.2011.11.002http://doi.org/10.1016/j.nds.2011.11.002
M. Laatiaoui, S. Raeder, New developments in the production and research of actinide elements. Atoms 10, 61 (2022). doi: 10.3390/atoms10020061http://doi.org/10.3390/atoms10020061
Q. Pan, H. Lu, D. Li et al., A new nonlinear iterative method for SPN method. Ann. Nucl. Energy 110, 920-927 (2017). doi: 10.1016/j.anucene.2017.07.030http://doi.org/10.1016/j.anucene.2017.07.030
Q. Pan, K. Wang, One-step Monte Carlo global homogenization based on RMC code. Nucl. Eng.Technol. 51, 1209-1217 (2019). doi: 10.1016/j.net.2019.04.001http://doi.org/10.1016/j.net.2019.04.001
Q. Pan, T. Zhang, X. Liu et al., Optimal batch size growth for Wielandt method and Superhistory method. Nucl. Sci. Eng. 196(2), 183-192 (2021). doi: 10.1080/00295639.2021.1968223http://doi.org/10.1080/00295639.2021.1968223
T. Zhang, H. Wu, Y. Zheng et al., A 3D transport-based core analysis code for research reactors with unstructured geometry. Nucl. Eng. Des. 265, 599-610, (2013). doi: 10.1016/j.nucengdes.2013.08.068http://doi.org/10.1016/j.nucengdes.2013.08.068
F.B. Brown, Fundamentals of Monte Carlo particle transport. LA-UR-05-4983, Los Alamos National Laboratory, 2008. https://mcnp.lanl.gov/pdf_files/la-ur-05-4983.pdfhttps://mcnp.lanl.gov/pdf_files/la-ur-05-4983.pdf
Z. Xie, Physical analysis of nuclear reactor, Xi'an Jiaotong University Press, 2004.
D. She, Y. Liu, K. Wang et al., Development of burnup methods and capabilities in Monet Carlo code RMC. Ann. Nucl. Energy 51, 289-294, (2013). doi: 10.1016/j.anucene.2012.07.033http://doi.org/10.1016/j.anucene.2012.07.033
D. She, K. Wang, G. Yu, Development of the point-depletion code DEPTH. Nucl. Eng. Des. 258, 235-240, (2013). doi: 10.1016/j.nucengdes.2013.01.007http://doi.org/10.1016/j.nucengdes.2013.01.007
A. Nouri, P. Nagel, N. Soppera et al., JANIS: A new software for nuclear data services. J. Nucl. Sci. Technol. 39, 1480-1483 (2002). doi: 10.1080/00223131.2002.10875385http://doi.org/10.1080/00223131.2002.10875385
Q. Pan, N. An, T. Zhang et al., Single-step Monte Carlo criticality algorithm. Comput. Phys. Commun. 279, 108439 (2022). doi: 10.1016/j.cpc.2022.108439http://doi.org/10.1016/j.cpc.2022.108439
Q. Pan, T. Zhang, X. Liu et al., SP3-Coupled Global Variance Reduction Method Based On RMC Code. Nucl. Sci. Tech. 32, 122 (2021). doi: 10.1007/s41365-021-00973-0http://doi.org/10.1007/s41365-021-00973-0
A. Ouardia, R. Alamia, A. Bensitela et al., GEANT4 used for neutron beam design of a neutron imaging facility at TRIGA reactor in Morocco. Nucl. Instrum. Meth. Phys. Res. Sect. A 651, 21-27 (2011). doi: 10.1016/j.nima.2011.02.096http://doi.org/10.1016/j.nima.2011.02.096
J. Mokhtari, F. Faghihi, J, Khorsandi, Design and optimization of the new LEU MNSR for neutron radiography using thermal column to upgrade thermal flux. Prog. Nucl. Energy 100, 211-232 (2017). doi: 10.1016/j.pnucene.2017.06.010http://doi.org/10.1016/j.pnucene.2017.06.010
K. Wang, Z. Li, D. She et al., RMC – A Monte Carlo code for reactor core analysis. Ann. Nucl. Energy 82, 121-129 (2015). doi: 10.1016/j.anucene.2014.08.048http://doi.org/10.1016/j.anucene.2014.08.048
N. Xoubi, R.T. Primm III, Modeling of the High Flux Isotope Reactor cycle 400. Oak Ridge National Laboratory. ORNL/TM-2004/251, 2004. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.605.281&rep=rep1&type=pdfhttps://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.605.281&rep=rep1&type=pdf
S. Hogle, G.I. Maldonado, Modeling of the high flux isotope reactor cycle 400 with KENO-VI. T. Am. Nucl. Soc. 104(1) (2011). https://www.ans.org/pubs/transactions/article-12169/https://www.ans.org/pubs/transactions/article-12169/
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution