1.School of Nuclear Science and Technology, Hunan provincial key laboratory of radon, University of South China, Hengyang 421001, China
2.School of Computer Science, University of South China, Hengyang 421001, China
3.China Institute of Atomic Energy, Beijing 102413, China
* shanjian0666@163.com.
Scan for full text
Feng-Di Qin, Han-Yu Luo, Zheng-Zhong He, et al. Counting of alpha particle tracks on imaging plate based on a convolutional neural network. [J]. Nuclear Science and Techniques 34(3):37(2023)
Feng-Di Qin, Han-Yu Luo, Zheng-Zhong He, et al. Counting of alpha particle tracks on imaging plate based on a convolutional neural network. [J]. Nuclear Science and Techniques 34(3):37(2023) DOI: 10.1007/s41365-023-01190-7.
Imaging plates are widely used to detect alpha particles to track information, and the number of alpha particle tracks is affected by the overlapping and fading effects of the track information. In this study, an experiment and a simulation were used to calibrate the efficiency parameter of an imaging plate, which was used to calculate the grayscale. Images were created by using grayscale, which trained the convolutional neural network to count the alpha tracks. The results demonstrated that the trained convolutional neural network can evaluate the alpha track counts based on the source and background images with a wider linear range, which was unaffected by the overlapping effect. The alpha track counts were unaffected by the fading effect within 60 min, where the calibrated formula for the fading effect was analyzed for 132.7 min. The detection efficiency of the trained convolutional neural network for inhomogeneous ,241,Am sources (2π emission) was 0.6050 ± 0.0399, whereas the efficiency curve of the photo-stimulated luminescence (PSL) method was lower than that of the trained convolutional neural network.
Imaging plateConvolutional neural networkAlpha tracks counting
M. Sonoda, M. Takano, J. Miyahara et al., Computed radiography utilizing scanning laser stimulated luminescence. Radiology 148(3), 833-838 (1983). doi: 10.1148/radiology.148.3.6878707http://doi.org/10.1148/radiology.148.3.6878707.
Y. Wang, Y.-Y. Liu, B. Wu et al., Experimental investigation on the radiation background inside body counters. Nucl. Sci. Tech. 33(2), 20 (2022). doi: 10.1007/s41365-022-01004-2http://doi.org/10.1007/s41365-022-01004-2
S. Abdullahi, A.F. Ismail and S. Samat, Radiological characterization of building materials used in Malaysia and assessment of external and internal doses. Nucl. Sci. Tech. 30, 46 (2019). doi: 10.1007/s41365-019-0569-3http://doi.org/10.1007/s41365-019-0569-3.
L.-F. Li, R. Chen, S.-M. Zhou et al., Evaluation of correlation between PM2.5 and radon-progeny equilibrium factor in radon chamber. Nucl. Sci. Tech. 29, 151 (2018). doi: 10.1007/s41365-018-0481-2http://doi.org/10.1007/s41365-018-0481-2
B. Chen, Radiation Detection Properties of a BaFX Imaging Plate and Its Application for Measurements of Gross Alpha. 2014, Fudan Univesity (in Chinese)
B. Chen, W. Zhuo, Comparison of discrimination methods for alpha radiation signals using imaging plates. Radiat. Prot. Dosimetry 152, 114-118 (2012). doi: 10.1093/rpd/ncs203http://doi.org/10.1093/rpd/ncs203.
C.J. Zeissler, A.P. Lindstrom, Spectral measurements of imaging plate backgrounds, alpha-particles and beta-particles. Nucl. Instrum. Meth. Phys. Res. Sect. A 624, 92-100 (2010).doi: 10.1016/j.nima.2010.09.002http://doi.org/10.1016/j.nima.2010.09.002.
Q.L. Chen, Z.P. Luo, Y.H. Xia, Comparison of caculated lung retention of 239Pu based on different human respiratory tract models. Chinese J. Radiological Health 27(2018). doi: 10.13491/j.issn.1004-714x.2018.02.001http://doi.org/10.13491/j.issn.1004-714x.2018.02.001 (in Chinese)
B. Chen, W.H. Zhuo and Y. Kong, Identification and counting of alpha tracks by using an imaging plate. Radiat. Measurements 46(3), 371-374 (2011). doi: 10.1016/j.radmeas.2011.01.002http://doi.org/10.1016/j.radmeas.2011.01.002
A.L. Gonzalez, H. Li, M. Mitch et al., Energy response of an imaging plate exposed to standard beta sources. Appl. Radiat. Isot. 57(6), 875-882 (2002). doi: 10.1016/s0969-8043(02)00199-9http://doi.org/10.1016/s0969-8043(02)00199-9.
M. Thoms, The quantum efficiency of radiographic imaging with image plates. Nucl. Instrum. Meth. Phys. Res. Sect. A 378(3), 598-611 (1996).doi: 10.1016/0168-9002(96)00530-xhttp://doi.org/10.1016/0168-9002(96)00530-x.
H. Zhang, B. Chen, C. Zhao et al., A new technique for measuring the concentrations of airborne radon progeny by using an imaging plate. Radiat. Prot. Dosimetry 152(1-3), 109-13 (2012). doi: 10.1093/rpd/ncs202http://doi.org/10.1093/rpd/ncs202.
H. Zhang, B. Chen, W. Zhuo et al., Measurements of the size distribution of unattached radon progeny by using the imaging plate. Radiat. Measurements 62, 41-44 (2014). doi: 10.1016/j.radmeas.2014.01.011http://doi.org/10.1016/j.radmeas.2014.01.011
J. Koarashi, F. Saito, K. Akiyama et al., A new digital autoradiographical method for identification of Pu particles using an imaging plate. Appl. Radiat. Isotopes 65(4), 413-418 (2007). doi: 10.1016/j.apradiso.2006.07.016http://doi.org/10.1016/j.apradiso.2006.07.016.
D.H. Fan, W.H. Zhuo, B. Chen et al., Uncertainty of an automatic system for counting alpha tracks on CR-39. Nucl. Sci. Tech. 28(11), 164 (2017) doi: 10.1007/s41365-017-0314-8http://doi.org/10.1007/s41365-017-0314-8
B. Chen, W.H. Zhuo, Y. Kong, Fading characteristics of alpha radiation signals stored in an imaging plate. J. Nucl. Sci. Technol. 48(8), 1158-1162 (2011) doi: 10.3327/jnst.48.1158http://doi.org/10.3327/jnst.48.1158
J. Won, J. Song, S. Palaniyappan et al., Monte Carlo study of imaging plate response to laser-driven aluminum ion beams. Applied Sciences-Basel 11(2), 820 (2021). doi: 10.3390/app11020820http://doi.org/10.3390/app11020820
M. Yao, Ph. Duvauchelle, V. Kaftandjian et al., X-ray imaging plate performance investigation based on a Monte Carlo simulation tool. Spectrochimica Acta Part B-Atomic Spectroscopy 103, 84-91 (2015). doi: 10.1016/j.sab.2014.12.001http://doi.org/10.1016/j.sab.2014.12.001
D.H. Hubel, T.N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160, 106-154 (1962) doi: 10.1113/jphysiol.1962.sp006837http://doi.org/10.1113/jphysiol.1962.sp006837
Y. Lecun, L. Bottou, Y. Bengio et al., Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998. 86(11), 2278-2324 (1998). doi: 10.1109/5.726791http://doi.org/10.1109/5.726791
X. Liu, Y. He, L. Wang, Adaptive transfer learning based on a two-stream densely connected residual shrinkage network for transformer fault diagnosis over vibration signals. Electronics 10(17), 2130 (2021). doi: 10.3390/electronics10172130http://doi.org/10.3390/electronics10172130
S. Albawi, T.A. Mohammed, S. Al-Zawi. Understanding of a convolutional neural network. in 2017 International Conference on Engineering and Technology (ICET). 2017.
W. Rawat, Z. Wang, Deep convolutional neural networks for image classification: A comprehensive review. Neural Computation 29(9), 2352-2449 (2017) doi: 10.1162/neco_a_00990http://doi.org/10.1162/neco_a_00990.
K. Fukushima, Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193-202 (1980) doi: 10.1007/bf00344251http://doi.org/10.1007/bf00344251.
S. Agostinelli, J. Allison, K. Amako, et al., Geant4—a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. Sect. A 506(3), 250-303 (2003) doi: 10.1016/s0168-9002(03)01368-8http://doi.org/10.1016/s0168-9002(03)01368-8.
Y. Zhang, X. Kang, L. Wang, Study on a continuous measurement method for unattached radon progeny. Health Phys. 120, 19-23 (2021). doi: 10.1097/HP.0000000000001263http://doi.org/10.1097/HP.0000000000001263.
A.U. Khan, L.A. DeWerd, Evaluation of the GEANT4 transport algorithm and radioactive decay data for alpha particle dosimetry. Appl. Radiat. Isotopes 176, 109849 (2021) doi: 10.1016/j.apradiso.2021.109849http://doi.org/10.1016/j.apradiso.2021.109849.
D. Doria, S. Kar, H. Ahmed et al., Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions. Rev. Scientific Instruments 86, 123302 (2015) doi: 10.1063/1.4935582http://doi.org/10.1063/1.4935582.
B.R. Maddox, H.S. Park, B.A. Remington et al., High-energy x-ray backlighter spectrum measurements using calibrated image plates. Rev. Scientific Instruments 82, 023111 (2011) doi: 10.1063/1.3531979http://doi.org/10.1063/1.3531979.
H. Luo, C. Chen, W. Shan, et al., iEnhancer-BERT: A novel transfer learning architecture based on DNA-Language model for identifying enhancers and their strength. In: D.S. Huang, K.H. Jo, J. Jing, P. Premaratne, V. Bevilacqua, A. Hussain, (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. 153-165 (2022) doi: 10.1007/978-3-031-13829-4_13http://doi.org/10.1007/978-3-031-13829-4_13.
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution