1.School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
2.Xi'an Rare Metal Materials Institute Co., Ltd, Xian 710016, China
xiaoganghu@yeah.net
pyguo@just.edu.cn
Scan for full text
Cheng-Jie Du, Xiao-Gang Hu, Ping-Yi Guo, et al. Effect of Gd on neutron absorption properties and electrochemical corrosion behavior of Zr-Gd alloy in boiling concentrated HNO3. [J]. Nuclear Science and Techniques 34(3):36(2023)
Cheng-Jie Du, Xiao-Gang Hu, Ping-Yi Guo, et al. Effect of Gd on neutron absorption properties and electrochemical corrosion behavior of Zr-Gd alloy in boiling concentrated HNO3. [J]. Nuclear Science and Techniques 34(3):36(2023) DOI: 10.1007/s41365-023-01193-4.
A Zr-Gd alloy with neutron poisoning properties and resistance to boiling concentrated HNO3 corrosion was developed based on a corrosion-resistant Zr-702 alloy to meet the demand for neutron shielding in the closed-loop treatment of spent fuel and the nuclear chemical industry. In this study, 1 wt. %, 3 wt. %, 5 wt. %, 7 wt. %, and 9 wt. % Zr-Gd alloys were designed and fabricated with Zr-702 as the control element. The electrochemical behavior of the Zr-Gd alloys in boiling concentrated HNO3 was investigated, and the neutron shielding effect on plate thickness and Gd content was simulated. The experimental results demonstrate that the corrosion resistance of the alloy decreased slightly before ~7 wt. %–9 wt. % with increasing Gd content; this is the inflection point of its corrosion resistance. The alloy uniformly dissolved the Gd content that could not be dissolved in the Zr lattice, resulting in numerous micropores on the passivation coating, which deteriorated and accelerated the corrosion rate. The MCNP simulation demonstrated that when the Gd content was increased to 5 wt. %, a 2-mm-thick plate can shield 99.9 % neutrons; an alloy with a Gd content ≥7 wt. % required only a 1-mm-thick plate, thereby showing that the addition of Gd provides an excellent neutron poisoning effect. Thus, the corrosion resistance and neutron shielding performance of the Zr-Gd alloy can meet the harsh service requirements of the nuclear industry.
Zr-Gd alloyBoiling concentrated HNO3ElectrochemistryNeutron shieldingMCNP
J. E. Birkett, M. J. Carrott, O.D. Fox et al., Recent developments in the Purex process for nuclear fuel reprocessing: Complexant based stripping for uranium/plutonium separation. CHIMIA. Int. J. Chem 59, 898-904(2005). doi: 10.2533/000942905777675327http://doi.org/10.2533/000942905777675327.
R.S. Herbst, P. Baron, M. Nilsson. Standard and advanced separation: PUREX processes for nuclear fuel reprocessing. Adv. Sep. Tech. Nucl Fuel. Reprocess, 141-75(2011). doi: 10.1533/9780857092274.2.141http://doi.org/10.1533/9780857092274.2.141.
P. Deng, Q. Peng, E.-H. Han, et al., Effect of irradiation on corrosion of 304 nuclear grade stainless steel in simulated PWR primary water. Corros. Sci 127, 91-100(2017). doi: 10.1016/j.corsci.2017.08.010http://doi.org/10.1016/j.corsci.2017.08.010.
F. Hua, K. Mon, P. Pasupathi et al., A review of corrosion of titanium grade 7 and other titanium alloys in nuclear waste repository environments. Corros 61, 987-1003(2005). doi: 10.5006/1.3280899http://doi.org/10.5006/1.3280899.
U.K. Mudali, R. Dayal, J. Gnanamoorthy, Corrosion studies on materials of construction for spent nuclear fuel reprocessing plant equipment. J. Nucl. Mater. 203, 73-82(1993). doi: 10.1016/0022-3115(93)90432-Xhttp://doi.org/10.1016/0022-3115(93)90432-X.
U. K. Mudali, A.R. Shankar, R. Natarajan et al., Application of zirconium alloys for reprocessing plant components. Nucl. Tech 182, 349-57(2013). doi: 10.13182/NT12-73http://doi.org/10.13182/NT12-73.
D.O. Northwood. The development and applications of zirconium alloys. Mater. Des 6, 58-70(1985). doi: 10.1016/0261-3069(85)90165-7http://doi.org/10.1016/0261-3069(85)90165-7.
R. Rajasekaran, A.K. Lakshminarayanan, M. Vasudevan et al., Role of welding processes on microstructure and mechanical properties of nuclear grade stainless steel joints. Proc. Inst. Mech. Eng, Part L 233, 2335-51(2019). doi: 10.1177/1464420719849448http://doi.org/10.1177/1464420719849448.
D.W. Shoesmith, J. Noel, D. Hardie et al., Hydrogen absorption and the lifetime performance of titanium nuclear waste containers. Corros. Rev 18, 331-60(2000). doi: 10.1515/CORRREV.2000.18.4-5.331http://doi.org/10.1515/CORRREV.2000.18.4-5.331.
S. Wang, M. Zhang, H. Wu et al., Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel. Mater. Charact 118, 92-101(2016). doi: 10.1016/j.matchar.2016.05.015http://doi.org/10.1016/j.matchar.2016.05.015.
Y. Han, J. Mei, Q. Peng et al., Effect of electropolishing on corrosion of nuclear grade 316L stainless steel in deaerated high temperature water. Corros. Sci: J. Environ. Degrad. Mater. Control 112, (2016). doi: 10.1016/j.corsci.2016.09.002http://doi.org/10.1016/j.corsci.2016.09.002.
J. Jiménez, P. Adeva, M.C. Cristina et al., Characterization of rapidly solidified ultrahigh boron steels. Mater. Sci. Eng. A 159, 103-109(1992). doi: 10.1016/0921-5093(92)90403-Nhttp://doi.org/10.1016/0921-5093(92)90403-N.
J. Martin, Effects of processing and microstructure on the mechanical properties of boron-containing austenitic stainless steels. Waste. Proc(1989). doi: 10.1016/0921-5093(95)10001-6http://doi.org/10.1016/0921-5093(95)10001-6.
P. Acosta, J.A. Jimenez, G. Frommeyer et al., Microstructural characterization of an ultrahigh carbon and boron tool steel processed by different routes. Mater. Sci. Eng. A 206, 194-200(1996). doi: 10.1016/0921-5093(95)10001-6http://doi.org/10.1016/0921-5093(95)10001-6.
S. Ningshen, U.K. Mudali, S. Ramya et al., Corrosion behaviour of AISI type 304L stainless steel in nitric acid media containing oxidizing species. Corros. Sci 53, 64-70(2011). doi: 10.1016/j.corsci.2010.09.023http://doi.org/10.1016/j.corsci.2010.09.023
R. Priya, S. Ningshen, U.K. Mudali, Influence of oxidizing ion concentration on the corrosion resistance of type 304L stainless steel in nitric acid medium. Corros 69, 335-44(2013). doi: 10.5006/703http://doi.org/10.5006/703.
L.P. Andresen, Irradiation Assisted Stress Corrosion Cracking. Compr. Nucl. Mater, 177-205(2012). doi: 10.1016/B978-0-08-056033-5.00084-7http://doi.org/10.1016/B978-0-08-056033-5.00084-7.
K. Fukuya, M. Nakano, K. Fujii et al., IASCC susceptibility and slow tensile properties of highly-irradiated 316 stainless steels. J. Nucl. Sci. Technol 41, 673-81(2004). doi: 10.1080/18811248.2004.9715532http://doi.org/10.1080/18811248.2004.9715532.
H. Nishioka, K. Fukuya, K. Fujii et al., IASCC Initiation in Highly Irradiated Stainless Steels under Uniaxial Constant Load Conditions. J. Nucl. Sci. Technol 45, 1072-7(2008). doi: 10.1080/18811248.2008.9711894http://doi.org/10.1080/18811248.2008.9711894.
V. Chandravanshi, R. Sarkar, P. Ghosal et al., Effect of minor additions of boron on microstructure and mechanical properties of as-cast near α titanium alloy. Metall. Mater. Trans. A 41, 936-46(2010). doi: 10.1007/s11661-009-0155-0http://doi.org/10.1007/s11661-009-0155-0.
D. Dunning, W. Anderson, P. Mertens, Boron Containing Control Materials. Nucl. Sci. Eng 4, 402-14(1958). doi: 10.13182/NSE58-A25537http://doi.org/10.13182/NSE58-A25537.
A. Bhattacharya, C.M. Parish, T. Koyanagi et al., Nano-scale microstructure damage by neutron irradiations in a novel Boron-11 enriched TiB2 ultra-high temperature ceramic. Acta Mater 165, 26-39(2019). doi: 10.1016/j.actamat.2018.11.030http://doi.org/10.1016/j.actamat.2018.11.030.
Y. Sano, M. Takeuchi, Y. Nakajima et al., Effect of metal ions in a heated nitric acid solution on the corrosion behavior of a titanium–5% tantalum alloy in the hot nitric acid condensate. J. Nucl. Mater 432, 475-81(2013). doi: 10.1016/j.jnucmat.2012.08.009http://doi.org/10.1016/j.jnucmat.2012.08.009.
N. Mattern, J. Han, O. Fabrichnaya et al., Experimental and thermodynamic assessment of the Gd–Ti system. Calphad 42, 19-26(2013). doi: 10.1016/j.calphad.2013.06.007http://doi.org/10.1016/j.calphad.2013.06.007.
N. Mattern, J. Han, M. Zinkevich et al., Experimental and thermodynamic assessment of the Gd–Zr system. Calphad 39, 27-32(2012). doi: 10.1016/j.calphad.2012.08.001http://doi.org/10.1016/j.calphad.2012.08.001.
H. Okamoto, Supplemental literature review of binary phase diagrams: Au-Ce, B-Pr, Bi-Gd, Bi-Ho, Cd-Sr, Ga-Ti, Gd-Pb, Gd-Ti, Mg-Mn, Mn-Nd, Nd-Ni, and Ni-Ti. J. Phase Equilib. Diffusion 36, 390-401(2015). doi: 10.1007/s11669-015-0389-zhttp://doi.org/10.1007/s11669-015-0389-z.
V. Mallipudi, S. Valance, J. Bertsch, Meso-scale analysis of the creep behavior of hydrogenated Zircaloy-4. Mech. Mater 51, 15-28(2012). doi: 10.1016/j.mechmat.2012.03.003http://doi.org/10.1016/j.mechmat.2012.03.003.
M. Rafique, S. Chae, Y.-S. Kim, Surface, structural and tensile properties of proton beam irradiated zirconium. Nucl. Ins Methods. Physics. Res B 368, 120-8(2016). doi: 10.1016/j.nimb.2015.12.001http://doi.org/10.1016/j.nimb.2015.12.001.
J. Dupont, C. Robino, T. Anderson, Influence of Gd and B on solidification behaviour and weldability of Ni–Cr–Mo alloy. Sci. Technol. Weld. Joi 13, 550-65(2008). doi: 10.1179/174329308X345083http://doi.org/10.1179/174329308X345083.
R. Mizia, J. Dupont, C. V. Robino et al., Corrosion Performance of a Gadolinium Containing Stainless Steel. J. Hepa 46, S100(2007). doi: 10.14359/7626http://doi.org/10.14359/7626.
R. E. Mizia, T. E. Lister, P. J. Pinhero et al., Development and testing of an advanced neutron-absorbing gadolinium alloy for spent nuclear fuel storage. Nucl. Tech 155, 133-48(2006).
P. Fauvet, Corrosion issues in nuclear fuel reprocessing plants. Nucl. Corros. Sci. Eng 29, 679-728 (2012). doi: 10.1533/9780857095343.5.679http://doi.org/10.1533/9780857095343.5.679.
E. Patrito, R. Torresi, E. Leiva et al., Potentiodynamic and AC impedance investigation of anodic zirconium oxide films. J. Electrochem. Soc 137, 524(1990). doi: 10.1149/1.2086492http://doi.org/10.1149/1.2086492.
C. Xia, Z. Zhang, Z. Feng et al., Effect of zirconium content on the microstructure and corrosion behavior of Ti-6Al-4V-xZr alloys. Corros. Sci 112, 687-95(2016). doi: 10.1016/j.corsci.2016.09.012http://doi.org/10.1016/j.corsci.2016.09.012.
D. R. Knittel, A. Bronson, Pitting corrosion on zirconium—a review. Corros 40, 9-14(1984). doi: 10.5006/1.3579296http://doi.org/10.5006/1.3579296.
P. Pedeferri, Corrosion Science and Engineering || Pitting Corrosion. Eng. Mater 11, 207-30(2018). doi: 10.1007/978-3-319-97625-9_11http://doi.org/10.1007/978-3-319-97625-9_11.
F. Robinson, Pitting corrosion: cause, effect, detection and prevention. Anti-Corros. Method. Mater, (1960). doi: 10.1108/eb019748http://doi.org/10.1108/eb019748.
X. Guo, Y. Sun, K. Cui. Darkening of zirconia: a problem arising from oxygen sensors in practice. Sensor. Actuat. B-Chem 31, 139-45(1996). doi: 10.1016/0925-4005(96)80058-Xhttp://doi.org/10.1016/0925-4005(96)80058-X.
C. Morant, J. Sanz, L. Galan et al., An XPS study of the interaction of oxygen with zirconium. Surf. Sci 218, 331-45(1989). doi: 10.1016/0039-6028(89)90156-8http://doi.org/10.1016/0039-6028(89)90156-8.
D. Raiser, J. Deville. Study of XPS photoemission of some gadolinium compounds. J. Electron. Spectrosc. Relat. Phenom 57, 91-7(1991). doi: 10.1016/0368-2048(91)85016-Mhttp://doi.org/10.1016/0368-2048(91)85016-M.
D. Sarma, C. Rao, XPES studies of oxides of second-and third-row transition metals including rare earths. J. Electron. Spectrosc. Relat. Phenom 20, 25-45(1980). doi: 10.1016/0368-2048(80)85003-1http://doi.org/10.1016/0368-2048(80)85003-1.
I. Milošev, T. Kosec, H. Strehblow, XPS and EIS study of the passive film formed on orthopaedic Ti–6Al–7Nb alloy in Hank's physiological solution. Electrochim. Acta 53, 3547-58(2008). doi: 10.1016/j.electacta.2007.12.041http://doi.org/10.1016/j.electacta.2007.12.041.
M. Fan, X. Ren, F. Zhou et al., Research and application of nuclear radiation protection materials. IOP Conf. Ser. Earth Environ. Sci, Kamakura, Japan, August 21-22, 2021. 012093. doi: 10.1088/1755-1315/859/1/012093http://doi.org/10.1088/1755-1315/859/1/012093.
H. Jing, L. Geng, S. Qiu et al., Research progress of rare earth composite shielding materials. J. Rare. Earth 41, 32-41(2023). doi: 10.1016/j.jre.2022.06.004http://doi.org/10.1016/j.jre.2022.06.004.
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution