1.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
* hedy@ihep.ac.cn,
jingyili@ihep.ac.cn
Scan for full text
Sheng-Chang Wang, Da-Yong He, Cai Meng, et al. Development and simulation of a gridded thermionic cathode electron gun for a high-energy photon source. [J]. Nuclear Science and Techniques 34(3):39(2023)
Sheng-Chang Wang, Da-Yong He, Cai Meng, et al. Development and simulation of a gridded thermionic cathode electron gun for a high-energy photon source. [J]. Nuclear Science and Techniques 34(3):39(2023) DOI: 10.1007/s41365-023-01195-2.
A gridded thermionic cathode electron gun was developed for the linear accelerator of the High Energy Photon Source (HEPS). An electron gun should provide a large maximum bunch charge with a wide adjustable range. To satisfy these requirements, the shape of the electrode was optimized using a multi-objective genetic algorithm. A large bunch charge with an adjustable range was achieved using the grid-limited gun, the flow of which was analyzed using 3-D simulations. The electron gun has been manufactured and tested, and the measured data of the grid-limited current and simulation results are compared and discussed in this study.
Electron gunMulti-objective genetic algorithmGridCST
Y. Jiao, Latest physics design of the HEPS accelerator. Rad. Dete. Tech. Methods 4, 399 (2020). doi: 10.1007/s41605-020-00212-xhttp://doi.org/10.1007/s41605-020-00212-x
Y. Jiao, G. Xu, X. Cui et al., The HEPS project. J. Syn. Rad. 25(6), 1611-1618 (2018). doi: 10.1107/S1600577518012110http://doi.org/10.1107/S1600577518012110
Y. Peng, Z. Duan, Y. Guo et al., Design of the HEPS booster lattice. Rad. Dete. Tech. Methods 4, 425-432 (2020). doi: 10.1007/s41605-020-00202-zhttp://doi.org/10.1007/s41605-020-00202-z
C. Meng, X. He, Y. Jiao et al., Physics design of the HEPS LINAC. Rad. Dete. Tech. Methods 4, 497-506 (2020). doi: 10.1007/s41605-020-00205-whttp://doi.org/10.1007/s41605-020-00205-w
Y. Guo, Y. Wei, Y. Peng et al., The transfer line design for the HEPS project. Rad. Dete. Tech. Methods 4, 440-447 (2020). doi: 10.1007/s41605-020-00209-6http://doi.org/10.1007/s41605-020-00209-6
J. He, Y. Sui, Y. Lu et al., Preliminary study on detection and cleaning of parasitic bunches. Nucl. Sci. Tech. 32(10), 114 (2021). doi: 10.1007/s41365-021-00948-1http://doi.org/10.1007/s41365-021-00948-1
Z. Duan, J. Chen, H. Shi et al., Using a pre-kicker to ensure safe extractions from the HEPS storage ring. Nucl. Sci. Tech. 32(12), 136 (2021). doi: 10.1007/s41365-021-00974-zhttp://doi.org/10.1007/s41365-021-00974-z.
T. Murata and H. Ishibuchi, in Proceedings of 1995 IEEE International Conference on Evolutionary Computation, 29 November - 01 December 1995
W.B. Hermannsfeldt, EGUN–An electron optics and gun design program. SLAC-331 (1988).
CST Studio Suite 2020, www.cst.comwww.cst.com
T. Asaka, T. Inagaki, T. Magome et al., Low-emittance radio-frequency electron gun using a gridded thermionic cathode. Phys. Rev. Accel. Beams 23, 063401 (2020). doi: 10.1103/PhysRevAccelBeams.23.063401http://doi.org/10.1103/PhysRevAccelBeams.23.063401
T. Asaka, N. Nishimori1, T. Inagaki et al., Transparent-grid scheme for generating cathode-emittance-dominated beams in a gridded thermionic gun. Jpn. J. Appl. Phys 60, 017001 (2021). doi: 10.35848/1347-4065/abd0c9http://doi.org/10.35848/1347-4065/abd0c9
K. Pepitone, B. Cassany, S. Doebert et al., Operation of a high-current drive beam electron gun prototype for the Compact Linear Collider. Rev. Sci. Instrum 91(9), 093302 (2020). doi: 10.1063/5.0013144http://doi.org/10.1063/5.0013144.
A.D. Yeremian, A. Jensen, E. Jongewaard et al., CLIC drive beam gun. SLAC-PUB-16407 (2015)
H. Zhang, S. Wang, D. Li et al., Design and verification of a wide range and high precision electron gun system. Nucl. Tech. 45(5), 050202 (2022). doi: 10.11889/j.0253-3219.2022.hjs.45.050202http://doi.org/10.11889/j.0253-3219.2022.hjs.45.050202 (in Chinese)
CPI Power Grid Devices-EIMAC Products, https://www.cpii.comhttps://www.cpii.com
J. Petillo, P. Blanchard, A. Mondelli et al., in Proceedings of the Particle Accelerator Conference, Chicago, IL, 18-22 June 2001
Q. Liu, H. Wang, H. Chen, et al., Development of the electron gun filament power supply for small size betatron. Nucl. Tech. 45(11), 110401(2022). doi: 10.11889/j.0253-3219.2022.hjs.45.110401http://doi.org/10.11889/j.0253-3219.2022.hjs.45.110401 (in Chinese)
K. Deb, A. Pratap, S. Agarwal et al., A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182-197(2002). doi: 10.1109/4235.996017http://doi.org/10.1109/4235.996017
L. Wang, W. Fang, Z. Zhao, Design and optimization of low-emittance C-band photocathode RF electron gun. Nucl. Tech. 45(6), 060201 (2021). doi: 10.11889/j.0253-3219.2021.hjs.44.060201http://doi.org/10.11889/j.0253-3219.2021.hjs.44.060201 (in Chinese)
J. Wang, K. Zhou, L. Peng et al., High-brightness photo-injector with standing-wave buncher-based ballistic bunching scheme for inverse Compton scattering light source. Nucl. Sci. Tech. 33(4), 44 (2022). doi: 10.1007/s41365-022-01025-xhttp://doi.org/10.1007/s41365-022-01025-x
W. Wang, C. Li, Z. He et al., Commissioning the photocathode radio frequency gun: a candidate electron source for Hefei Advanced Light Facility. Nucl. Sci. Tech. 33(3), 23 (2022). doi: 10.1007/s41365-022-01000-6http://doi.org/10.1007/s41365-022-01000-6
Poisson code, Los Alamos National Laboratory Report 1987’ LA UR87126
A.S. Gilmour, Klystrons, Traveling Wave Tubes, Magnetrons, Cross-Field Amplifiers, and Gyrotrons, 1st edn. (Artech House, 2011)
W.D. Kilpatrick, Criterion for vacuum sparking designed to include both rf and dc. Rev. Sci. Instrum 28, 824-826 (1957). doi: 10.1063/1.1715731http://doi.org/10.1063/1.1715731
C. Meng, X. He, S. Pei et al., in Proceedings of the International Particle Accelerator Conference, Vancouver, Canada, 29 April - 04 May 2018
S. Zhang, S. Wang, C. Meng et al., The physics design of HEPS Linac bunching system. Rad. Dete. Tech. Methods 4, 433-439 (2020). doi: 10.1007/s41605-020-00200-1http://doi.org/10.1007/s41605-020-00200-1
B. Liu, M. Gu, C. Zhang et al., in Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee, 16-20 May 2005
A.Y. Baikov, C. Marrelli, I. Syratchev, Toward high-power klystrons with RF power conversion efficiency on the order of 90%. IEEE Trans. Electron Devices 62(10), 3406-3412 (2015). doi: 10.1109/TED.2015.2464096http://doi.org/10.1109/TED.2015.2464096
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution