Shi-Jing SHAO, Pan GUO, Liang ZHAO, et al. Ordered water monolayer on ionic model substrates studied by molecular dynamics simulations. [J]. Nuclear Science and Techniques 25(2):020502(2014)
DOI:
Shi-Jing SHAO, Pan GUO, Liang ZHAO, et al. Ordered water monolayer on ionic model substrates studied by molecular dynamics simulations. [J]. Nuclear Science and Techniques 25(2):020502(2014) DOI: 10.13538/j.1001-8042/nst.25.020502.
Ordered water monolayer on ionic model substrates studied by molecular dynamics simulations
The molecular behaviors of interfacial water molecules at the solid/liquid interface are of a fundamental significance in a diverse set of technical and scientific contexts, thus have drawn extensive attentions. On certain surfaces, the water monolayer may exhibit an ordered feature, which may result in the novel wetting phenomenon. In this article, based on the molecular dynamics simulations, we make a detailed structure analysis of the ordered water monolayer on ionic model surface with graphene-like hexagonal lattices under various charges and unit cell sizes. We carefully analyze the water density profiles and potential of mean force, which are the origin of the special hexagonal ordered water structures near the solid surface. The number of hydrogen bonds of the ordered water monolayer near the solid surface is carefully investigated.
关键词
Keywords
Ordered water monolayerHydrogen bondMolecular dynamics simulations
references
Stirnemann G, Rossky P J, Hynes J T, et al. Faraday Discuss, 2010, 146: 263-281.
Stirnemann G, Castrillón S R V, Hynes J T, et al. Phys Chem Chem Phys, 2011, 13: 19911-19917.
Malani A and Ayappa K G. J Chem Phys, 2012, 136: 194701.
Phan A, Ho T A, Cole D R, et al. J Phys Chem C, 2012, 116: 15962-15973.
Ostroverkhov V, Waychunas G A, Shen Y R. Phys Rev Lett, 2005, 94: 46102.
Zheng J M, Chin W C, Khijniak E, et al. Adv Colloid Interfac, 2006, 127: 19-27.
Sovago M, Campen R K, Wurpel G W H, et al. Phys Rev Lett, 2008, 100: 173901.
Zanotti J M, Bellissent-Funel M C, Chen S H. Europhys Lett, 2005, 71: 91-97.
Goertz M P, Houston J, Zhu X Y. Langmuir, 2007, 23: 5491-5497.
Hummer G, Garde S, Garcıa A E, et al. Chem Phys, 2000, 258: 349-370.
Vauthey S, Santoso S, Gong H, et al. P Natl Acad Sci USA, 2002, 99: 5355-5360.
Xiu P, Zhou B, Qi W P, et al. J Am Chem Soc, 2009, 131: 2840-2845.
York D M, Darden T A, Pedersen L G, et al. Biochemistry-US, 1993, 32: 1443-1453.
Gragson D E, McCarty B M, Richmond G L. J Am Chem Soc, 1997, 119: 6144-6152.
Bandyopadhyay S, Tarek M, Klein M L. Curr Opin Colloid Int, 1998, 3: 242-246.
Tian C, Xiu P, Meng Y, et al. Chem-Eur J, 2012, 18: 14305-14313.
Yang Z, Shi B, Lu H, et al. J Phys Chem B, 2011, 115: 11137-11144.
Chen S H, Gallo P, Bellissent-Funel M C. Can J Phys, 1995, 73: 703-709.
Li J, Liu T, Li X, et al. J Phys Chem B, 2005, 109: 13639-13648.
Riter R E, Willard D M, Levinger N E. J Phys Chem B, 1998, 102: 2705-2714.
Pal S K, Peon J, Bagchi B, et al. J Phys Chem B, 2002, 106: 12376-12395.
Pal S K, Peon J, Zewail A H. P Natl Acad Sci USA, 2002, 99: 1763-1768.
Pal S, Balasubramanian S, Bagchi B. J Phys Chem B, 2003, 107: 5194-5202.
Wang C, Lu H, Wang Z, et al. Phys Rev Lett, 2009, 103: 137801.