Quigley K.. A study of quasi-absolute method in photon activation analysis. [J]. Nuclear Science and Techniques 25(5):050201(2014)
DOI:
Quigley K.. A study of quasi-absolute method in photon activation analysis. [J]. Nuclear Science and Techniques 25(5):050201(2014) DOI: 10.13538/j.1001-8042/nst.25.050201.
A study of quasi-absolute method in photon activation analysis
Relative methods, which are performed with the assistance of reference materials, are widely used in photon activation analysis (PAA). On the contrary, absolute methods, which are conducted without any reference material, are rarely applied due to the difficulty in obtaining photon flux. To realize absolute measurement in PAA, we retrieve photon flux in the sample via Monte Carlo simulation and raise a novel procedure—quasi-absolute method. With simulated photon flux and cross section data from existing databases, it is possible to calculate the concentration of target elements in the sample straightforwardly. A controlled experiment indicates that results from the quasi-absolute method for certain elements are nearly comparable to relative methods in practice. This technique of absolute measurement has room for improvement in the future and can serve as a validation technique for experimental data on cross sections as well.
关键词
Keywords
Photon activation analysis (PAA)Monte Carlo SimulationLINAC
references
Gaudin A M and Pannell J H. Anal Chem, 1951, 23: 1261-1265.
Basile R, Hure J, Leveque P, et al. Comp Rend Acad Sci, 1954, 239: 422-424.
Segebade C and Berger A. Photon Activation Analysis. John Wiley & Sons, Ltd. 2008.
Ni J and Xu X G. Int J Environ An Ch, 2000, 78: 117-134.
Tsipenyuk Y M and Firsov V I. Appl Radiat Isotopes, 2009, 67: 152-154.
Goerner W. J Radioanal Nucl Ch, 2008, 276: 251-255.
Mamtimin M, Cole P L, Segebade C. AIP Conf Proc, 2013, 1525: 400-406.
Avino P, Capannesi G, Lopez F, et al. Scientific World J, 2013: 458793.
Avino P, Capannesi G, Manigrasso M, et al. Chem Cent J, 2013, 7: 173-182.
Segebade C, Weise H P, Lutz G. Photon activation analysis. Berlin: Walter de Gruyter, 1998, 13-17.
Sun Z J, Wells D P, Starovoitova V, et al. AIP Conf Proc, 2013, 1525: 412-416.
Sun Z J, Wells D P, Segebade C, et al. J Radioanal Nucl Ch, 2013, 296: 293-299.
Wise S A. Certificate of analysis: standard reference material 1648a urban particulate matter, National Institute of Standards and Technology, 2008.
Geant4 Collaboration. Geant4 user’s guide for application developers. Geant4.9.6.0, November. European Organization for Nuclear Research, 2012.
Boudreau J W B and Cosmo C. CLHEP user guide, http://proj–clhep.web.cern.ch/proj–clhep/manual/http://proj–clhep.web.cern.ch/proj–clhep/manual/. Accessed 10 July 2013.
Veyssière A, Beil H, Bergère R, et al. Nucl Phys A, 1974, 227: 513-540.
Alvarez R A, Berman B L, Lasher D R, et al. Phys Rev C, 1971, 4: 1673-1679.
IAEA. Handbook on photonuclear data for applications cross–sections and spectra. I.A.E.A. TECDOC 1178. 2000.
Tompkins J R, Arnold C W, Karwowski H J, et al. Phys Rev C, 2011, 84, 044331.
O’Keefe G J, Thompson M N, Assafiri Y I. Nucl Phys A, 1987, 469: 239-252.
Ahrens J, Borchert H, Czock K H, et al. Nucl Phys A, 1975, 251: 479-492.
Alvarez R A, Berman B L, Faul D D, et al. Phys Rev C, 1979, 20: 128-138.
Bazhanov E B, Komar A P, Kulikov A V. Pis’ma v Zh Èksper Teoret Fiz, 1964, 46: 1497-1499.
Fultz S C, Bramblett R L, Caldwell J T, et al. Phys Rev, 1962, 128: 2345-2351.
Fultz S C, Alvarez R A, Berman B L, et al. Phys Rev C, 1974, 10: 608-619.
Owen D, Muirhead E, and Spicer B. Nucl Phys A, 1970, 140: 523-528.
Goryachev B. Yadernaya Fizika, 1970, 11: 252-256.
Goryachev A. Voprosy Teoreticheskoy i Yadernoy Fiziki, 1982, 8-121.
Berman B L, Bramblett R L, Caldwell J T, et al. Phys Rev, 1969, 177: 1745-1754.
Carlos P, Beil H, Bergère R, et al. Nucl Phys A, 1976, 258: 365-387.
Varlamov V V, Peskov N N, Rudenko D S, et al. MSU-INP-2003-2/715.Engl transl of YK, 2003, 1–2, 43–51.
Leprêtre A, Beil H, Bergère R, et al. Nucl Phys A, 1971, 175: 609-628.
Katz L and Cameron A G W. Can J Phys, 1951, 29: 518-544.
Leprêtre A, Beil H, Bergère R, et al. Nucl Phys A, 1974, 219: 39-60.
Belyazv S. Izv Ross Akad Nauk, Ser Fiz, 1991, 55: 953-956.
Leprêtre A, Beil H, Bergère R, et al. Nucl Phys A, 1976, 258: 350-364.
Venables W N, Smith D M, the R Core Team. An introduction to R, Version 3.0.1., 2013. http://cran.r–project.org/doc/manuals/r-release/R-intro.htmlhttp://cran.r–project.org/doc/manuals/r-release/R-intro.html
A characterization study on perovskite X-ray detector performance based on a digital radiography system
Quantitative modeling, optimization, and verification of 63Ni-powered betavoltaic cells based on three-dimensional ZnO nanorod arrays
Hybrid model for muon tomography and quantitative analysis of image quality
Monte Carlo simulation of neutron sensitivity of microfission chamber in neutron flux measurement
A novel 4D resolution imaging method for low and medium atomic number objects at the centimeter scale by coincidence detection technique of cosmic-ray muon and its secondary particles
Related Author
No data
Related Institution
University of Electronic Science and Technology of China
Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University