1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
Corresponding author, hejianhua@sinap.ac.cn
Scan for full text
Qi-Sheng WANG, Feng YU, Sheng HUANG, et al. The macromolecular crystallography beamline of SSRF. [J]. Nuclear Science and Techniques 26(1):010102(2015)
Qi-Sheng WANG, Feng YU, Sheng HUANG, et al. The macromolecular crystallography beamline of SSRF. [J]. Nuclear Science and Techniques 26(1):010102(2015) DOI: 10.13538/j.1001-8042/nst.26.010102.
The macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility (SSRF) is the first dedicated macromolecular crystallography (MX) beamline at a third-generation synchrotron in China. It utilizes an in-vacuum undulator as a source and is energy-tunable from 5 to 18 keV. The beamline was commissioned and opened for users in April 2009. The experimental station was upgraded in 2011 with an advanced detector, a high precision goniometer and an automatic sample exchanger for high efficient and high-throughput data collection of protein crystals. The current set-up allows for remote operation of sample mounting, centering and data collection of pre-frozen crystals. In recent two years, the number of PDB depositions from this beamline exceeds 330 each year. In this paper, we describe the complete BL17U1 beamline with upgraded end station and how it is managed for user community.
Macromolecular crystallographyBeamline automation
M H Jiang, X Yang, H J Xu, et al. Shanghai Synchrotron Radiation Facility. Chin Sci Bull, 2009, 54: 4171-4181. DOI: 10.1007/s11434-009-0689-yhttp://doi.org/10.1007/s11434-009-0689-y
Z T Zhao, L X Yin, Y B Leng, et al. Performance optimization and upgrade of the ssrf storage ring. Proceedings of IPAC13, Shanghai, China, 2013, 178-180.
W Zhang, Q G Zhou, H F Wang. The performance optimization for two in-vacuum undulators in SSRF. Sientia Sinica Phys Mechanica Astron, 2011, 41: 2-5. (in Chinese) DOI: 10.1360/132010-680http://doi.org/10.1360/132010-680
R W Alkire, G Rosenbaum, G Evans. Design of a vacuum-compatible high-precision monochromatic beam-position monitor for use with synchrotron radiation from 5 to 25 keV. J Synchrotron Radiat, 2000, 7: 61-68. DOI: 10.1107/S090904959901568Xhttp://doi.org/10.1107/S090904959901568X
Q Y Pan, Q S Wang, Z J Wang, et al. An active beamstop for accurate measurement of high intensity X-ray beams. Nucl Instrum Meth A, 2014, 735: 584-586. DOI: 10.1016/j.nima.2013.10.011http://doi.org/10.1016/j.nima.2013.10.011
P Liu, Y N Zhou, Q R Mi, et al. EPICS-based data acquisition system on beamlines at SSRF. Nucl Tech, 2010, 33: 415-419. (in Chinese)
T M McPhillips, S E McPhillips, H J Chiu, et al. Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. J Synchrotron Radiat, 2002, 9: 401-406. DOI: 10.1107/S0909049502015170http://doi.org/10.1107/S0909049502015170
Q S Wang, S Huang, B Sun, et al. Control and data acquisition system for the macromolecular crystallography beamlines of SSRF. Nucl Tech, 2012, 35: 5-11. (in Chinese)
Z Otwinowski and W Minor. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276: 307-326. DOI: 10.1016/S0076-6879(97)76066-Xhttp://doi.org/10.1016/S0076-6879(97)76066-X
T G G Battey, L Kongtogiannis, O Johoson, et al. IMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D, 2011, 67: 271-281. DOI: 10.1107/S0907444910048675http://doi.org/10.1107/S0907444910048675
W Kabsch. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Crystallogr, 1993, 26: 795-800. DOI: 10.1107/S0021889893005588http://doi.org/10.1107/S0021889893005588
S Bailey. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D, 1994, 50: 760-763. DOI: 10.1107/S0907444994003112http://doi.org/10.1107/S0907444994003112
P D Adams, R W Grosse-Kunstleve, L W Hung, et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D, 2002, 58: 1948-1954. DOI: 10.1107/S0907444902016657http://doi.org/10.1107/S0907444902016657
G M Sheldrick. A short history of SHELX. Acta Crystallogr A, 2008, 64: 112-122. DOI: 10.1107/S0108767307043930http://doi.org/10.1107/S0108767307043930
Q S Wang, B Sun, S Huang, et al. Remote access of the beamline BL17U at Shanghai Synchrotron Radiation Facility. Acta Crystallogr A, 2014, 70: C796.
D Deng, C Yan, X Pan, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science, 2012, 335: 720-723. DOI: 10.1126/science.1215670http://doi.org/10.1126/science.1215670
Y Shi, W Zhang, F Wang, et al. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses. Science, 2013, 342: 243-247. DOI: 10.1126/science.1242917http://doi.org/10.1126/science.1242917
D Wu, Q Hu, Z Yan, et al. Structural basis of ultraviolet-B perception by UVR8. Nature, 2012, 484: 214-219. DOI: 10.1038/nature10931http://doi.org/10.1038/nature10931
L L Hu, Z Li, J Cheng, et al. Crystal structure of TET2-DNA complex: Insight into TET-mediated 5mC oxidation. Cell, 2013, 155: 1545-1555. DOI: 10.1016/j.cell.2013.11.020http://doi.org/10.1016/j.cell.2013.11.020
T Wang, G Fu, X Pan, et al. Structure of a bacterial energy-coupling factor transporter. Nature, 2013, 497: 272-276. DOI: 10.1038/nature12045http://doi.org/10.1038/nature12045
J Zhu, W Wen, Z Zheng, et al. LGN/mInsc and LGN/NuMA complex structures suggest distinct functions in asymmetric cell division for the Par3/LGN and Gαi/LGN/NuMA pathways. Mol Cell, 2011, 43: 418-431. DOI: 10.1016/j.molcel.2011.07.011http://doi.org/10.1016/j.molcel.2011.07.011
K Lyu, J Ding, J F Han, et al. Human enterovirus 71 uncoating captured at atomic resolution. J Virol, 2014, 88: 3114-3126. DOI: 10.1128/JVI.03029-13http://doi.org/10.1128/JVI.03029-13
0
Views
2
Downloads
9
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution