Cheng-Ming LUO, Shun-Qiang TIAN, Kun WANG, et al. Parallelizing AT with open multi-processing and MPI. [J]. Nuclear Science and Techniques 26(3):030104(2015)
DOI:
Cheng-Ming LUO, Shun-Qiang TIAN, Kun WANG, et al. Parallelizing AT with open multi-processing and MPI. [J]. Nuclear Science and Techniques 26(3):030104(2015) DOI: 10.13538/j.1001-8042/nst.26.030104.
Parallelizing AT with open multi-processing and MPI
Simulating charged particle motion through the elements is necessary to understand modern particle accelerators. The particle numbers and the circling turns in a synchrotron are huge, and a simulation can be time-consuming. Open multi-processing (OpenMP) is a convenient method to speed up the computing of multi-cores for computers based on share memory model. Using message passing interface (MPI) which is based on non-uniform memory access architecture, a coarse grain parallel algorithm is set up for the Accelerator Toolbox (AT) for dynamic tracking processes. The computing speedup of the tracking process is 3.77 times with a quad-core CPU computer and the speed almost grows linearly with the number of CPU.
A Terebilo. Accelerator toolbox for MATLAB. SLAC-PUB-8732, 2001.
S Q Tian, B C Jiang and Q G Zhou. Lattice design and optimization of the SSRF storage ring with super-bends. Nucl Sci Tech, 2014, 25: 010102. DOI: 10.13538/j.1001-8042/nst.25.010102http://doi.org/10.13538/j.1001-8042/nst.25.010102
B C Jiang, G M Liu and Z T Zhao. Simulation of a transverse feedback system for the SSRF storage ring. High Energ Phys Nucl, 2007, 31: 956-961.
X Y Yan, W W Zhang and S H Bu. Parallel optimization of three-dimension particle simulation based on nixed MPI/OpenMP Programming. Journal of South China University of Technology (Natural Science Edition), 2012, 40: 71-78. DOI: 10.3969/j.issn.1000-565X.2012.04.011http://doi.org/10.3969/j.issn.1000-565X.2012.04.011
H Grote and F C Iselin. The MAD Program (Methodical Accelerator Design) Version 8.13/8 User’s Reference Manual. Geneva, Switzerland. Jan. 18, 1994.
R Appleby, D Bailey, J Higham, et al. High performance stream computing for particle beam transport simulations. J Phys Conf Ser, 2008, 119: 042001. DOI: 10.1088/1742-6596/119/4/042001http://doi.org/10.1088/1742-6596/119/4/042001
G L Chen, G Z Sun, Y Xu, et al. Integrated research of parallel computing: Status and future. Chinese Sci Bull, 2009, 54: 1845-1853. DOI: 10.1007/s11434-009-0261-9http://doi.org/10.1007/s11434-009-0261-9
L Dagum and R Menon. OpenMP: an industry standard API for shared-memory programming. IEEE Comput Sci Eng, 1998, 5: 46-55. DOI: 10.1109/99.660313http://doi.org/10.1109/99.660313
Y Zhang. Solving large-scale linear programs by interior-point methods under the Matlab Environment. Optim Method Softw, 1998, 10: 1-31. DOI: 10.1080/10556789808805699http://doi.org/10.1080/10556789808805699
J Kepner. Parallel programming with MatlabMPI. arXiv: astro-ph/0107406
A Marowka. On performance analysis of a multithreaded application parallelized by different programming models using intel Vtune. Lect Notes Comput Sc, 2011, 6873: 317-331. DOI: 10.1007/978-3-642-23178-0_28http://doi.org/10.1007/978-3-642-23178-0_28
J Laskar. Frequency map analysis and particle accelerators. IEEE Part Acc Conf, 2003, 1: 378-382. DOI: 10.1109/PAC.2003.1288929http://doi.org/10.1109/PAC.2003.1288929
S Q Tian, G M Liu, H H Li, et al. Tune optimization of the third generation light source storage ring based on Frequency Map Analysis. Chinese Phys C, 2009, 33: 224-231. DOI: 10.1088/1674-1137/33/3/012http://doi.org/10.1088/1674-1137/33/3/012
R Chandra, L Dagum, D Kohr, et al. Parallel programming in OpenMP. San Francisco (USA): Morgan Kaufmann Publishers, 2001, 16-17.