Cui-Juan LÜ, Chun-Wang Ma, Yi-Pu LIU, et al. An Investigation on γ induced activation reactions on human essential elements. [J]. Nuclear Science and Techniques 26(3):030503(2015)
DOI:
Cui-Juan LÜ, Chun-Wang Ma, Yi-Pu LIU, et al. An Investigation on γ induced activation reactions on human essential elements. [J]. Nuclear Science and Techniques 26(3):030503(2015) DOI: 10.13538/j.1001-8042/nst.26.030503.
An Investigation on γ induced activation reactions on human essential elements
In radiotherapy, the energy of the γ rays used could be larger than 10 MeV, which would potentially activate stable nucleus into a radioactive one. The γ induced reactions on some of the human essential elements are studied to show the probability of changes of nuclei. The Talys1.4 toolkit was adopted as the theoretical model for calculation. The reactions investigated include the (γ,n,) and (γ,p,) channels for the stable Na, Mg, Cl, K, Ca, and Fe isotopes, with the incident energy of γ ranging from 1 to 30 MeV. It was found that the cross sections for the reactions are very low, and the maximum cross section is no larger than 100 mb. By considering the threshold energy of the channel, the half-life time of the residue nucleus, and the percentage of the element accounting for the weight and its importance in the body, it is suggested to track the radioactive nuclei ,22,Na,41,Ca, and ,42,43,K after γ therapy. The results might be useful for medical diagnosis and disease treatment.
W J Yuan, Y Y Ao, L Zhao, et al. γ-ray induced radiolysis of [C2mim][NTf2] and its effects on Dy3+ extraction. Nucl Sci Tech, 2015, 26: S10306. DOI: 10.13538/j.1001-8042/nst.26.S10306http://doi.org/10.13538/j.1001-8042/nst.26.S10306
W B Jia, Y H Wei, J G Liu, et al. Radiolysis of HA in aqueous solutions using gamma rays. Nucl Sci Tech, 2013, 24: S010308.
H S El-Beltagi, O K Ahmed and W El-Desouky. Effect of low doses gamma-irradiation on oxidative stress and secondary metabolites production of rosemary (Rosmarinus officinalis L.) callus culture. Radiat Phys Chem, 2011, 80: 968-976. DOI: 10.1016/j.radphyschem.2011.05.002http://doi.org/10.1016/j.radphyschem.2011.05.002
F Wang, M Y Wang, Y F Liu, et al. Obtaining low energy γ dose with CMOS sensors. Nucl Sci Tech, 2014, 25: 060401. DOI: 10.13538/j.1001-8042/nst.25.060401http://doi.org/10.13538/j.1001-8042/nst.25.060401
V M Masur and L M Mel’nikova. Giant dipole resonance in absorption and emission γ rays of by medium and heavy nuclei. Phys Part Nuclei, 2006, 37: 923-940. DOI: 10.1134/S1063779606060050http://doi.org/10.1134/S1063779606060050
Ish Mukul, A Roy, P Sugathan, et al. Effect of angular momentum on giant dipole resonance observables in the 28Si + 116Cd reaction. Phys Rev C, 2013, 88: 024312. DOI: 10.1103/PhysRevC.88.024312http://doi.org/10.1103/PhysRevC.88.024312
T E Rodrigues, J D T Arruda-Neto, Z Carvalheiro, et al. Statistical and direct aspects of 64Zn (γ, n) and (γ, np) decay channels in the giant dipole resonance and quasideuteron energy regions. Phys Rev C, 2003, 68: 014618. DOI: 10.1103/PhysRevC.68.014618http://doi.org/10.1103/PhysRevC.68.014618
J W Jury, B L Berman, D D Faul, et al. Photoneutron cross section for 13C. Phys Rev C, 1979, 19: 1684-1692. DOI: 10.1103/PhysRevC.19.1684http://doi.org/10.1103/PhysRevC.19.1684
J W Jury, B L Berman, D D Faul, et al. Photoneutron cross section for 17O. Phys Rev C, 1980, 21: 503-511. DOI: 10.1103/PhysRevC.21.503http://doi.org/10.1103/PhysRevC.21.503
J G Woodworth, K G McNeill, J W Jury, et al. Photonuclear cross section for 18O. Phys Rev C, 1979, 19: 1667-1683. DOI: 10.1103/PhysRevC.19.1667http://doi.org/10.1103/PhysRevC.19.1667
K G McNeill, R E Pywell, B L Berman, et al. Photoneutron cross section for 29Si. Phys Rev C, 1987, 36: 1621-1622. DOI: 10.1103/PhysRevC.36.1621http://doi.org/10.1103/PhysRevC.36.1621
A J Koning, S Hilaire, M C Duijvestijn, et al. User Manual of Talys-1.4. http://www.talys.eu/download-talys/http://www.talys.eu/download-talys/
J Raynal. Notes on ECIS94, CEA Saclay Report. No. CEA-N-2772, 1994.
C W Ma, C J Lü, H L Wei, et al. An investigation on neutron induced reactions on stable CNO isotopes. Nucl Sci Tech, 2014, 25: 040501. DOI: 10.13538/j.1001-8042/nst.25.040501http://doi.org/10.13538/j.1001-8042/nst.25.040501
C W Ma, R Y Jing, X Feng, et al. Investigation of neutron induced reactions on 23Na by using Talys1.4. Chinese Phys C, 2014, 38: 104101. DOI: 10.1088/1674-1137/38/10/104101http://doi.org/10.1088/1674-1137/38/10/104101
Experimental Nuclear Reaction Data (EXFOR). https://www-nds.iaea.org/exfor/exfor.htmhttps://www-nds.iaea.org/exfor/exfor.htm
Micronutrient Information Center. http://lpi.oregonstate.edu/infocenter/contentnuts.htmlhttp://lpi.oregonstate.edu/infocenter/contentnuts.html
J L Lin and H Y Hsu. Study of sodium ion selective electrodes and differential structures with anodized indium tin oxide. Sensors, 2010, 10: 1798-1809. DOI: 10.3390/s100301798http://doi.org/10.3390/s100301798
R A Alvarez, B L Berman, D R Lasher, et al. Photoneutron cross sections for 23Na and 25Mg. Phys Rev C, 1971, 4: 1673-1679. DOI: 10.1103/PhysRevC.4.1673http://doi.org/10.1103/PhysRevC.4.1673
A Veyssière, H Beil, R Bergère, et al. A study of the photoneutron contribution to the giant dipole resonance of s-d shell nuclei. Nucl Phys A, 1974, 227: 513-540. DOI: 10.1016/0375-9474(74)90774-Xhttp://doi.org/10.1016/0375-9474(74)90774-X