Xiao-Dong ZHOU, Si-Hua ZHOU, Xian-Ke SUN, et al. TiO2 nanofilm growth by Ti ion implantation and thermal annealing in O2 atmosphere. [J]. Nuclear Science and Techniques 26(3):030507(2015)
DOI:
Xiao-Dong ZHOU, Si-Hua ZHOU, Xian-Ke SUN, et al. TiO2 nanofilm growth by Ti ion implantation and thermal annealing in O2 atmosphere. [J]. Nuclear Science and Techniques 26(3):030507(2015) DOI: 10.13538/j.1001-8042/nst.26.030507.
TiO2 nanofilm growth by Ti ion implantation and thermal annealing in O2 atmosphere
TiO,2, nanofilms on surface of fused silica were fabricated by Ti ion implantation and subsequent thermal annealing in oxygen ambience. The silica glasses were implanted by 20 kV Ti ions to 1.5×10,17, ions/cm,2, on an implanter of metal vapor vacuum arc (MEVVA) ion source. Effects of annealing parameters on formation, growth and phase transformation of the TiO,2, nanofilms were studied in detail. Optical absorption spectroscopy, Raman scattering spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy measurements were done to figure out formation mechanism of the TiO,2, nanofilms. The formation of TiO,2, nanofilms was due to out-diffusion of the implanted Ti ions to the substrate surface, where they were oxidized into TiO,2, nanoparticles. Formation, phase, and thickness of the TiO,2, nanofilms can be well tailored by controlling annealing parameters.
关键词
Keywords
Ion implantationThermal annealingTiO2nanofilmsCharacterization
references
A Fujishima and K Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972, 238: 37-38. DOI: 10.1038/238037a0http://doi.org/10.1038/238037a0
T Fröschl, U Hörmann, P Kubiak, et al. High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem Soc Rev, 2012, 41: 5313-5360. DOI: 10.1039/c2cs35013khttp://doi.org/10.1039/c2cs35013k
X B Chen and S S Mao. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev, 2007, 107: 2891-2959. DOI: 10.1021/cr0500535http://doi.org/10.1021/cr0500535
F X Liang, T L Kelly, L B Luo, et al. Self-cleaning organic vapor sensor based on a nanoporous TiO2 interferometer. ACS Appl Mater Interfaces, 2012, 4: 4177-4183. DOI: 10.1021/am300896phttp://doi.org/10.1021/am300896p
Y Y Song, Z D Gao, J H Wang, et al. Multistage coloring electrochromic device based on TiO2 nanotube arrays modified with WO3 nanoparticles. Adv Funct Mater, 2011, 21: 1941-1946. DOI: 10.1002/adfm.201002258http://doi.org/10.1002/adfm.201002258
H Choi, E Stathatos and D D Dionysiou. Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl Catal B-Environ, 2006, 63: 60-67. DOI: 10.1016/j.apcatb.2005.09.012http://doi.org/10.1016/j.apcatb.2005.09.012
I Stambolova, M Shipochka, V Blaskov, et al. Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye. J Photoch Photobio B, 2012, 117: 19-26. DOI: 10.1016/j.jphotobiol.2012.08.006http://doi.org/10.1016/j.jphotobiol.2012.08.006
I Stambolova, V Blaskov, M Shipochka, et al. Effect of post-synthesis acid activation of TiO2 nanofilms on the photocatalytic efficiency under visible light. J Phys Conf Ser, 2014, 558: 012055. DOI: 10.1088/1742-6596/558/1/012055http://doi.org/10.1088/1742-6596/558/1/012055
M B Casu, W Braun, K R Bauchspiess, et al. A multi-technique investigation of TiO2 films prepared by magnetron sputtering. Surf Sci, 2008, 602: 1599-1606. DOI: 10.1016/j.susc.2008.02.030http://doi.org/10.1016/j.susc.2008.02.030
H F Sun, C Y Wang, S H Pang, et al. Photocatalytic TiO2 films prepared by chemical vapor deposition at atmosphere pressure. J Non-Cryst Solids, 2008, 354: 1440-1443. DOI: 10.1016/j.jnoncrysol.2007.01.108http://doi.org/10.1016/j.jnoncrysol.2007.01.108
J G Yu and X J Zhao. Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films. Mater Res Bull, 2000, 35: 1293-1301. DOI: 10.1016/S0025-5408(00)00327-5http://doi.org/10.1016/S0025-5408(00)00327-5
A Kleiman, A Márquez, M L Vera, et al. Photocatalytic activity of TiO2 thin films deposited by cathodic arc. Appl Catal B-Environ, 2011, 101: 676-681. DOI: 10.1016/j.apcatb.2010.11.009http://doi.org/10.1016/j.apcatb.2010.11.009
H Amekura, N Umeda, Y Sakuma, et al. Fabrication of ZnO nanoparticles in SiO2 by ion implantation combined with thermal oxidation. Appl Phys Lett, 2005, 87: 013109. DOI: 10.1063/1.1989442http://doi.org/10.1063/1.1989442
F Ren, C Z Jiang and X H Xiao. Fabrication of single-crystal ZnO film by Zn ion implantation and subsequent annealing. Nanotechnology, 2007, 18: 285609. DOI: 10.1088/0957-4484/18/28/285609http://doi.org/10.1088/0957-4484/18/28/285609
X H Xiao, F Ren, L X Fan, et al. ZnO single-crystal films fabricated by the oxidation of zinc-implanted sapphire. Nanotechnology, 2008, 19: 325604. DOI: 10.1088/0957-4484/19/32/325604http://doi.org/10.1088/0957-4484/19/32/325604
Y X Liu, Y C Liu, C L Shao, et al. Excitonic properties of ZnO nanocrystalline films prepared by oxidation of zinc-implanted silica. J Phys D Appl Phys, 2004, 37: 3025-3029. DOI: 10.1088/0022-3727/37/21/013http://doi.org/10.1088/0022-3727/37/21/013
X Xiang, M Chen, Y F Ju, et al. N-TiO2 nanoparticles embedded in silica prepared by Ti ion implantation and annealing in nitrogen. Nucl Instrum Meth B, 2010, 268: 1440-1445. DOI: 10.1016/j.nimb.2010.01.023http://doi.org/10.1016/j.nimb.2010.01.023
F Ren, X D Zhou, Y C Liu, et al. Fabrication and properties of TiO2 nanofilms on different substrates by a novel and universal method of Ti-ion implantation and subsequent annealing. Nanotechnology, 2013, 24: 255603. DOI: 10.1088/0957-4484/24/25/255603http://doi.org/10.1088/0957-4484/24/25/255603
R Asahi, T Morikawa, T Ohwaki, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293: 269-271. DOI: 10.1126/science.1061051http://doi.org/10.1126/science.1061051
J Zhang, M J Li, Z C Feng, et al. UV Raman spectroscopic study on TiO2. I. phase transformation at the surface and in the bulk. J Phys Chem B, 2006, 110: 927-935. DOI: 10.1021/jp0552473http://doi.org/10.1021/jp0552473
R I Bickley, T Gonzalez-Carreno, J S Lees, et al. A structural investigation of titanium dioxide photocatalysts. J Solid State Chem, 1991, 92: 178-190. DOI: 10.1016/0022-4596(91)90255-Ghttp://doi.org/10.1016/0022-4596(91)90255-G
T Ohsaka, F Izumi and Y Fujiki. Raman spectrum of anatase TiO2. J Raman Spectrosc, 1978, 7: 321-324. DOI: 10.1002/jrs.1250070606http://doi.org/10.1002/jrs.1250070606
A Chaves, K S Katiyan and S P S Porto. Coupled modes with A1 symmetry in tetragonal BaTiO3. Phys Rev B, 1974, 10: 3522-3533. DOI: 10.1103/PhysRevB.10.3522http://doi.org/10.1103/PhysRevB.10.3522
W F Zhang, Y L He, M S Zhang, et al. Raman scattering study on anatase TiO2 nanocrystals. J Phys D Appl Phys, 2000, 33: 912-916. DOI: 10.1088/0022-3727/33/8/305http://doi.org/10.1088/0022-3727/33/8/305
J C Parker and R W Siegel. Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes. J Mater Res, 1990, 5: 1246-1252. DOI: 10.1557/JMR.1990.1246http://doi.org/10.1557/JMR.1990.1246
J C Parker and R W Siegel. Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl Phys Lett, 1990, 57: 943-945. DOI: 10.1063/1.104274http://doi.org/10.1063/1.104274
D Bersani, P P Lottici and X Z Ding. Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl Phys Lett, 1998, 72: 73-75. DOI: 10.1063/1.120648http://doi.org/10.1063/1.120648
W H Ma, Z Lu and M Zhang. Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy. Appl Phys A, 1998, 66: 621-627. DOI: 10.1007/s003390050723http://doi.org/10.1007/s003390050723
E Barborini, I N Kholmanov, P Piseri, et al. Engineering the nanocrystalline structure of TiO2 films by aerodynamically filtered cluster deposition. Appl Phys Lett, 2002, 81: 3052-3054. DOI: 10.1063/1.1510579http://doi.org/10.1063/1.1510579
V Swamy, A Kuznetsov, L S Dubrovinsky, et al. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2. Phys Rev B, 2005, 71: 184302. DOI: 10.1103/PhysRevB.71.184302http://doi.org/10.1103/PhysRevB.71.184302
T Ohsaka, S Yamaoka and O Shimomura. Effect of hydrostatic pressure on the Raman spectrum of anatase (TiO2). Solid State Commun, 1979, 30: 345-347. DOI: 10.1016/0038-1098(79)90648-3http://doi.org/10.1016/0038-1098(79)90648-3
J F Meng, G T Zou, Q L Cui, et al. Raman scattering from PbTiO3 of various grain sizes at high hydrostatic pressures. J Phys Condens Matter, 1994, 6: 6543-6548. DOI: 10.1088/0953-8984/6/32/015http://doi.org/10.1088/0953-8984/6/32/015
Surface metallization of PTFE and PTFE composites by ion implantation for low-background electronic substrates in rare-event detection experiments
Characterization of silicon microstrip sensors for space astronomy
PL and ESR study for defect centers in 4H-SiC induced by oxygen ion implantation
Characterization of a broad-energy germanium detector for its use in CJPL
Preparation and characterization of the antifouling porous membranes from poly(vinylidene fluoride)-graft-poly(N-vinyl pyrrolidone) powders
Related Author
No data
Related Institution
Joint Research Center, Nuctech Company Limited
Department of Engineering Physics, Key Laboratory of Particle & Radiation Imaging of Ministry of Education Tsinghua University
Beijing Radiation Center
College of Nuclear Science and Technology, Joint Laboratory of Jinping Ultra-low Radiation Background Measurement of Ministry of Ecology and Environment and Beijing Normal University, Key Laboratory of Beam Technology of Ministry of Education, Beijing Normal University
Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences