1.National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Corresponding author, twchu@pku.edu.cn
Scan for full text
Qing-Hui CHENG, Ze-Jun LI, Tai-Wei CHU. Adsorption of gaseous iodine-131 at high temperatures by silver impregnated alumina. [J]. Nuclear Science and Techniques 26(4):040303(2015)
Qing-Hui CHENG, Ze-Jun LI, Tai-Wei CHU. Adsorption of gaseous iodine-131 at high temperatures by silver impregnated alumina. [J]. Nuclear Science and Techniques 26(4):040303(2015) DOI: 10.13538/j.1001-8042/nst.26.040303.
To prevent radioactive iodides from releasing into the environment in an accident of a nuclear power plant, silver-impregnated alumina (Ag/Al,2,O,3,) was fabricated, and its performance of radioactive iodine adsorption from high-temperature gas was tested. The silver loadings on alumina were obtained by ICP-OES and the texture properties of Ag/Al,2,O,3, were characterized by N,2, adsorption-desorption. The Ag/Al,2,O,3, was of reduced specific surface (107.2 m,2,/g at 650 ℃). Crystalline phases of Ag/Al,2,O,3, were confirmed through XRD characterization. After calcination at 650 ℃ for 2 h, the crystalline phase of Ag/Al,2,O,3, changed. The ,131,I- removal efficiency of Ag/Al,2,O,3, was tested at 100, 250, 350, 450 and 650 ℃, with good decontamination factor values for the radioactive iodine. Silver-impregnated alumina can be applied as adsorbents to remove radioactive iodine at high temperatures in nuclear accident.
Silver impregnated aluminaHigh temperatureRadioactive iodineAdsorptionDecontamination factor
P Slovic, J H Flynn and M Layman. Perceived risk, trust, and the politics of nuclear waste. Science, 1991, 254: 1603-1607. DOI: 10.1126/science.254.5038.1603http://doi.org/10.1126/science.254.5038.1603
A Bo, S Sarina, Z F Zheng, et al. Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent. J Hazard Mater, 2013, 246: 199-205. DOI: 10.1016/j.jhazmat.2012.12.008http://doi.org/10.1016/j.jhazmat.2012.12.008
D M Chapin, K P Cohen, W K Davis, et al. Nuclear safety - nuclear power plants and their fuel as terrorist targets. Science, 2002, 297: 1997-1999. DOI: 10.1126/science.1077855http://doi.org/10.1126/science.1077855
P C Burns, R C Ewing and A Navrotsky. Nuclear fuel in a reactor accident. Science, 2012, 335: 1184-1188. DOI: 10.1126/science.1211285http://doi.org/10.1126/science.1211285
D F Sava, M A Rodriguez, K W Chapman, et al. Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. J Am Chem Soc, 2011, 133: 12398-12401. DOI: 10.1021/ja204757xhttp://doi.org/10.1021/ja204757x
K Buesseler, M Aoyama and M Fukasawa. Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ Sci Technol, 2011, 45: 9931-9935. DOI: 10.1021/es202816chttp://doi.org/10.1021/es202816c
X L Hou, P P Povinec, L Y Zhang, et al. Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget. Environ Sci Technol, 2013, 47: 3091-3098. DOI: 10.1021/es304460khttp://doi.org/10.1021/es304460k
M Chino, H Nakayama, H Nagai, et al. Preliminary estimation of release amounts of I-131 and Cs-137 accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol, 2011, 48: 1129-1134. DOI: 10.1080/18811248.2011.9711799http://doi.org/10.1080/18811248.2011.9711799
N Yoshida and J Kanda. Tracking the Fukushima radionuclides. Science, 2012, 336: 1115-1116. DOI: 10.1126/science.1219493http://doi.org/10.1126/science.1219493
H Kawamura, T Kobayashi, A Furuno, et al. A methodology for scenario development based on understanding of long-term evolution of geological disposal systems. J Nucl Sci Technol, 2012, 48: 1349-1356. DOI: 10.1080/00223131.2012.693884http://doi.org/10.1080/00223131.2012.693884
V R Deitz. Interaction of radioactive iodine gaseous species with nuclear-grade activated carbons. Carbon, 1987, 25: 31-38. DOI: 10.1016/0008-6223(87)90037-6http://doi.org/10.1016/0008-6223(87)90037-6
C C Chien, Y P Huang, W C Wang, et al. Efficiency of moso bamboo charcoal and activated carbon for adsorbing radioactive iodine. Clean-Soil Air Water, 2011, 39: 103-108. DOI: 10.1002/clen.201000012http://doi.org/10.1002/clen.201000012
K Kosaka, M Asami, N Kobashigawa, et al. Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake. Water Res, 2012, 46: 4397-4404. DOI: 10.1016/j.watres.2012.05.055http://doi.org/10.1016/j.watres.2012.05.055
J Guczi, A Angelova, R A Bulman, et al. Investigation of the interactions of 110mAg+ and 125I- with humic-acid chemically immobilized on silica-gel. Reactive Polymers, 1992, 17: 61-68. DOI: 10.1016/0923-1137(92)90570-Rhttp://doi.org/10.1016/0923-1137(92)90570-R
T Sakurai, A Takahashi, M L Ye, et al. Trapping and measuring radioiodine (iodine-129) in cartridge filters. J Nucl Sci Technol, 1997, 34: 211-216. DOI: 10.1080/18811248.1997.9733648http://doi.org/10.1080/18811248.1997.9733648
S Sarri, P Misaelides, F Noli, et al. Removal of iodide from aqueous solutions by polyethylenimine-epichlorohydrin resins. J Radioanal Nucl Chem, 2013, 298: 399-403. DOI: 10.1007/s10967-013-2662-0http://doi.org/10.1007/s10967-013-2662-0
S Usseglio, A Damin, D Scarano, et al. (I2)(n) encapsulation inside TiO2: A way to tune photoactivity in the visible region. J Am Chem Soc, 2007, 129: 2822-2828. DOI: 10.1021/ja066083mhttp://doi.org/10.1021/ja066083m
D J Yang, S Sarina, H Y Zhu, et al. Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew Chem Int Ed, 2011, 50: 10594-10598. DOI: 10.1002/anie.201103286http://doi.org/10.1002/anie.201103286
D J Yang, H W Liu, Z F Zheng, et al. Titanate-based adsorbents for radioactive ions entrapment from water. Nanoscale, 2013, 5: 2232-2242. DOI: 10.1039/c3nr33622khttp://doi.org/10.1039/c3nr33622k
D J Yang, H W Liu, L Liu, et al. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions. Nanoscale, 2013, 5: 11011-11018. DOI: 10.1039/c3nr02412ahttp://doi.org/10.1039/c3nr02412a
R J Huang, X L Hou and T Hoffmann. Extensive evaluation of a diffusion denuder technique for the quantification of atmospheric stable and radioactive molecular iodine. Environ Sci Technol, 2010, 44: 5061-5066. DOI: 10.1021/es100395phttp://doi.org/10.1021/es100395p
H Faghihian, M G Maragheh and A Malekpour. Adsorption of radioactive iodide by natural zeolites. J Radioanal Nucl Chem, 2002, 254: 545-550. DOI: 10.1023/A:1021698207045http://doi.org/10.1023/A:1021698207045
J Warchol, P Misaelides, R Petrus, et al. Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides. J Hazard Mater, 2006, 137: 1410-1416. DOI: 10.1016/j.jhazmat.2006.04.028http://doi.org/10.1016/j.jhazmat.2006.04.028
Y Watanabe, T Ikoma, H Yamada, et al. Novel long-term immobilization method for radioactive iodine-129 using a Zeolite/Apatite composite sintered body. ACS Appl Mater Interfaces, 2009, 1: 1579-1584. DOI: 10.1021/am900251mhttp://doi.org/10.1021/am900251m
A A Malik, P R Meddings, A Patel, et al. Competitive effects in the adsorption of CH3I on KI-impregnated activated carbons in the presence of CO2. Carbon, 1996, 34: 439-447. DOI: 10.1016/0008-6223(95)00165-4http://doi.org/10.1016/0008-6223(95)00165-4
F Kepak. Removal of gaseous fission products by adsorption. J Radioanal Nucl Chem, 1990, 142: 215-230. DOI: 10.1007/BF02039464http://doi.org/10.1007/BF02039464
C M Gonzalez-Garcia, J F Gonzalez and S Roman. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons. Fuel Process Technol, 2011, 92: 247-252. DOI: 10.1016/j.fuproc.2010.04.014http://doi.org/10.1016/j.fuproc.2010.04.014
J S Hoskins and T Karanfil. Removal and sequestration of iodide using silver-impregnated activated carbon. Environ Sci Technol, 2002, 36: 784-789. DOI: 10.1021/es010972mhttp://doi.org/10.1021/es010972m
T Karanfil, E C Moro and S M Serkiz. Development and testing of a silver chloride-impregnated activated carbon for aqueous removal and sequestration of iodide. Environ Technol, 2005, 26: 1255-1262. DOI: 10.1080/09593332608618595http://doi.org/10.1080/09593332608618595
B S Choi, G I Park, J W Lee, et al. Performance test of silver ion-exchanged zeolite for the removal of gaseous radioactive methyl iodide at high temperature condition. J Radioanal Nucl Chem, 2003, 256: 19-26. DOI: 10.1023/A:1023383505788http://doi.org/10.1023/A:1023383505788
G Garbarino, A Lagazzo, P Riani, et al. Steam reforming of ethanol-phenol mixture on Ni/Al2O3: effect of Ni loading and sulphur deactivation. Appl Catal B-Environmental, 2013, 129: 460-472. DOI: 10.1016/j.apcatb.2012.09.036http://doi.org/10.1016/j.apcatb.2012.09.036
G Lopez-Granada, J D O Barceinas-Sanchez, R Lopez, et al. High temperature stability of anatase in titania-alumina semiconductors with enhanced photodegradation of 2, 4-dichlorophenoxyacetic acid. J Hazard Mater, 2013, 263: 84-92. DOI: 10.1016/j.jhazmat.2013.07.060http://doi.org/10.1016/j.jhazmat.2013.07.060
P Gudlur, A Muliana and M Radovic. Effective thermo-mechanical properties of aluminum-alumina composites using numerical approach. Compos Part B-Eng, 2014, 58: 534-543. DOI: 10.1016/j.compositesb.2013.10.052http://doi.org/10.1016/j.compositesb.2013.10.052
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution