1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2.Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Beijing 100084, China
Jiaru Shi, Department of Engineering Physics, Tsinghua University, shij@tsinghua.edu.cn
J
i
a
r
u
S
h
i
,
D
e
p
a
r
t
m
e
n
t
o
f
E
n
g
i
n
e
e
r
i
n
g
P
h
y
s
i
c
s
,
T
s
i
n
g
h
u
a
U
n
i
v
e
r
s
i
t
y
,
s
h
i
j
@
t
s
i
n
g
h
u
a
.
e
d
u
.
c
n
纸质出版日期:2022-07,
网络出版日期:2022-07-20,
收稿日期:2022-04-07,
修回日期:2022-06-07,
录用日期:2022-06-09
扫 描 看 全 文
引用本文
Liu-Yuan Zhou, Hao Zha, Jia-Ru Shi, 等. A non-invasive diagnostic method of cavity detuning based on a convolutional neural network[J]. Nuclear Science and Techniques, 2022, 33(7):94
Liu-Yuan Zhou, Hao Zha, Jia-Ru Shi, et al. A non-invasive diagnostic method of cavity detuning based on a convolutional neural network[J]. Nuclear Science and Techniques, 2022, 33(7):94
Liu-Yuan Zhou, Hao Zha, Jia-Ru Shi, 等. A non-invasive diagnostic method of cavity detuning based on a convolutional neural network[J]. Nuclear Science and Techniques, 2022, 33(7):94 DOI: 10.1007/s41365-022-01069-z.
Liu-Yuan Zhou, Hao Zha, Jia-Ru Shi, et al. A non-invasive diagnostic method of cavity detuning based on a convolutional neural network[J]. Nuclear Science and Techniques, 2022, 33(7):94 DOI: 10.1007/s41365-022-01069-z.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构