1.Nuclear and Radiation Safety Center, Ministry of Environmental Protection, Beijing 100082, China
Corresponding author. E-mail address:quejiqueji@163.com
Scan for full text
Feng-Li Song, Xiao-Wei Yang, Xiao-Long Li, et al. The behavior of cesium adsorption on zirconyl pyrophosphate. [J]. Nuclear Science and Techniques 27(3):60(2016)
Feng-Li Song, Xiao-Wei Yang, Xiao-Long Li, et al. The behavior of cesium adsorption on zirconyl pyrophosphate. [J]. Nuclear Science and Techniques 27(3):60(2016) DOI: 10.1007/s41365-016-0054-1.
Zirconyl pyrophosphate (ZrP2O7) was prepared and Cs adsorption behavior was studied. Results show that the.distribution coefficient of Cs adsorption on ZrP2O7 was about 2800 mL/g Ion exchange capacity of ZrP2O7 was 0.35 mmol/g. In dynamic tests, Cs can be separated from other fission products very well by ZrP2O7. The ZrP2O7 was stable both at high temperatures and in high concentration of nitric acid. The Cs adsorption by ZrP2O7 is a monolayer and chemical adsorption.
zirconyl pyrophosphateadsorbentcesium
R.C. Ewing, W.J. Weber, JrF.W. Clinard. Radiation effects in nuclear waste forms for high-level radioactive waste. Prog Nucl.Energ. 29(2), 63-127(1995). DOI: 10.1016/0149-1970(94)00016-Yhttp://doi.org/10.1016/0149-1970(94)00016-Y
K. Ikeda, S. Koyama, M. Kurata. Technology readiness assessment of partitioning and transmutation in Japan and issues toward closed fuel cycle. Prog Nucl Energ. 74,242-263(2014). DOI: 10.1016/j.pnucene.2013.12.009http://doi.org/10.1016/j.pnucene.2013.12.009
H.S. Junga, S. Choia, I.S. Hwanga. Environmental assessment of advanced partitioning, transmutation, and disposal based on long-term risk-informed regulation: PyroGreen. Prog Nucl Energ. 58,27-38(2012). DOI: 10.1016/j.pnucene.2012.02.003http://doi.org/10.1016/j.pnucene.2012.02.003
M. Salvatores, G. Palmiotti. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges. Prog Part Nucl Phys. 66,144-166(2011). DOI: 10.1016/j.ppnp.2010.10.003http://doi.org/10.1016/j.ppnp.2010.10.003
E.M. González-Romero. Impact of partitioning and transmutation on the high level waste management. Nucl Eng Des. 241,3436-3444(2011). DOI: 10.1016/j.nucengdes.2011.03.030http://doi.org/10.1016/j.nucengdes.2011.03.030
T. Tsukada, K. Uozumi, T. Hijikata, etc. Early construction and operation of highly contaminated water treatment system in Fukushima Daiichi Nuclear Power Station (I) - Ion exchange properties of KURION herschelite in simulating contaminated water. J Nucl Sci Technol. 51,886-893(2014). DOI: 10.1080/00223131.2014.921582http://doi.org/10.1080/00223131.2014.921582
K. Shakir, M. Sohsah, M. Soliman. Removal of cesium from aqueous solutions and radioactive waste simulants by coprecipitate flotation. Sep Purif Technol. 54,373-381(2007). DOI: 10.1016/j.seppur.2006.10.006http://doi.org/10.1016/j.seppur.2006.10.006
L.H. Delmau, P.V. Bonnesen, B.A. Moyer. A solution to stripping problems caused by organophilic anion impurities in crown-ether-based solvent extraction systems: a case study of cesium removal from radioactive wastes. Hydrometallurgy. 72,9-19(2004). DOI: 10.1016/S0304-386X(03)00120-8http://doi.org/10.1016/S0304-386X(03)00120-8
D.R. Raut, P.K. Mohapatra, M.K. Choudhary. Evaluation of two calix-crown-6 ligands for the recovery of radio cesium from nuclear waste solutions: Solvent extraction and liquid membrane studies. J Membrane Sci. 429,197-205(2013). DOI: 10.1016/j.memsci.2012.11.045http://doi.org/10.1016/j.memsci.2012.11.045
J.K Kim, J.S Kim, Y. G Shul. Selective extraction of cesium ion with calyx [4] arene crown ether through thin sheet supported liquid membranes. J Membrane Sci. 187,3-11(2001). DOI: 10.1016/S0376-7388(00)00592-5http://doi.org/10.1016/S0376-7388(00)00592-5
A.Y. Zhang, J.Y. Li, Y. Dai. Development of a new simultaneous separation of cesium and strontium by extraction chromatograph utilization of a hybridized macroporous silica-based functional material. Sep Purif Technol. 127,39-45(2014). DOI: 10.1016/j.seppur.2014.02.022http://doi.org/10.1016/j.seppur.2014.02.022
W.H. Duan, J. Chen, J.c. Wang. Application of annular centrifugal contactors in the hot test of the improved total partitioning process for high level liquid waste. J Hazard Mater. 278,566-571(2014). DOI: 10.1016/j.jhazmat.2014.06.049http://doi.org/10.1016/j.jhazmat.2014.06.049
R.R. Sheha. Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium fromradioactive waste solutions. J Colloid Interf Sci. 388,21-30(2012). DOI: 10.1016/j.jcis.2012.08.042http://doi.org/10.1016/j.jcis.2012.08.042
Z. Chen, Y. Wu, Y.Z. Wei. Cesium Removal from high level liquid waste utilizing a macroporous silica-based calix[4]arene-R14 adsorbent modified with surfactants. Energy Procedia. 39,319-327(2013). DOI: 10.1016/j.egypro.2013.07.219http://doi.org/10.1016/j.egypro.2013.07.219
M.R. Awual, S. Suzuki, T. Taguchi, Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem Eng J. 242,127-135(2014). DOI: 10.1016/j.cej.2013.12.072http://doi.org/10.1016/j.cej.2013.12.072
E.H. Borai, R. Harjula, Leena malinen, Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.J Hazard Mater. 172,416-422(2009). DOI: 10.1016/j.jhazmat.2009.07.033http://doi.org/10.1016/j.jhazmat.2009.07.033
A. Clearfield, J.A. Stynes. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behavior. J Inorg Nucl Chem. 26,117-129(1964). DOI: 10.1016/0022-1902(64)80238-4http://doi.org/10.1016/0022-1902(64)80238-4
L. Kullberg, A. Clearfield. On the mechanism of ion exchange in zirconium phosphates-35. An equilibrium study of Na+Cs+H+ exchange on crystalline α-zirconium phosphate. J Inorg Nucl Chem. 43,2543-2548(1981). DOI: 10.1016/0022-1902(81)80298-9http://doi.org/10.1016/0022-1902(81)80298-9
K. Lv, L.P. Xiong, Y.M. Luo. Ion exchange properties of cesium ion sieve based on zirconium molybdopyrophosphate. Colloid Surface A. 433,37-46(2013). DOI: 10.1016/j.colsurfa.2013.04.061http://doi.org/10.1016/j.colsurfa.2013.04.061
K. Lv, Y.M. Luo, L.P. Xiong Studies on ion exchange behavior of cesium into zirconium molybdopyrophosphate and its application as precursor of cesium ion sieve. Colloid Surface A. 417,243-249(2013). DOI: 10.1016/j.colsurfa.2012.09.037http://doi.org/10.1016/j.colsurfa.2012.09.037
S.A. Shady. Selectivity of cesium from fission radionuclides using resorcinol-formaldehyde and zirconyl-molybdopyrophosphate as ion-exchangers. J Hazard Mater. 167,947-952(2009). DOI: 10.1016/j.jhazmat.2009.01.084http://doi.org/10.1016/j.jhazmat.2009.01.084
H.Y. Zhang, R.S. Wang, C.Sh. Lin. A new ecomaterial zirconyl molybdopyrophosphate for the removal of 137Cs and 90Sr from HLLW. J. Radioanal. Nucl. Chem. 247,541-544(2001). DOI: 10.1023/A:1010630510267http://doi.org/10.1023/A:1010630510267
H.Y. Zhang, S.L. Wang, R.S. Wang. New ecomaterial zireonyl molybopyrophosphate for cesium removal from HLLW. Acta Phys. Chim. Sin., 16,952-955(2000). DOI: 10.3866/PKU.WHXB20001016http://doi.org/10.3866/PKU.WHXB20001016
X.C. Fu, W.X. Shen, etc. Physical Chemistry (Volume 2). (Higher Education Press, Beijing, 2006), pp. 361-375.
0
Views
0
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution