1.College of Physics and Electronic Engineering, Henan Normal University, Henan 453007, China
2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jiading campus, 2019 Jia Luo Road, Jiading District, Shanghai 201800, China
Corresponding author: E-mail address: jinchan@sinap.ac.cn
Scan for full text
Shi-Pei Jing, Can Zhang, Jie Pu, et al. 3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10. [J]. Nuclear Science and Techniques 27(3):66(2016)
Shi-Pei Jing, Can Zhang, Jie Pu, et al. 3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10. [J]. Nuclear Science and Techniques 27(3):66(2016) DOI: 10.1007/s41365-016-0071-0.
Molten salt is used as primary coolant flowing through graphite moderator channel of a molten salt reactor. Working at high temperature under radiation environment, the pore network structure of nuclear graphite should be well understood. In this paper, X-ray tomography is employed to study the 3D pore structure characteristics of nuclear grades graphite of IG-110, NBG-18 and NG-CT-10, and permeability simulation through geometries are performed. The porosity, number of pores and throats, coordination number and pore surface are obtained. NG-CT-10 is of similar microstructure to IG-110, but differs significantly from NBG-18. The absolute permeabilities of IG-110, NG-CT-10 and NBG-18 are 0.064, 0.090 and 0.106 mD, respectively. This study provides basis for future research on graphite infiltration experiment.
X-ray tomography3D pore network structurePermeability
A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002,GIF-002-00.
W. Windes, T. Burchell, R. Bratton. Report - INL/EXT-07-13165, 2007.
R. Bratton, W. Windes. Report - ORNL/TM-2007/153-10-07 2010.
C. Berre, S.L. Fok, P.M. Mummery, et al. Failure analysis of the effects of porosity in thermally oxidised nuclear graphite using finite element modelling. J Nucl Mater, 2008, 381: 1-8. DOI: 10.1016/j.jnucmat.2008.07.021http://doi.org/10.1016/j.jnucmat.2008.07.021.
A.S. Nazarov, V.G. Makotchenko,V.E. Fedorov. Preparation of low-temperature graphite fluorides through decomposition of fluorinated-graphite intercalation compounds. Inorg Mater+, 2006, 42: 1260-1264. DOI: 10.1134/S002016850611015xhttp://doi.org/10.1134/S002016850611015x.
J. Giraudet, M. Dubois, K. Guerin, et al. Solid-state NMR study of the post-fluorination of (C2.5F)n fluorine-GIC. J Phys Chem B, 2007, 111: 14143-14151. DOI: 10.1021/Jp076170ghttp://doi.org/10.1021/Jp076170g.
M. Dubois, K. Guerin, J.P. Pinheiro, et al. NMR and EPR studies of room temperature highly fluorinated graphite heat-treated under fluorine atmosphere. Carbon, 2004, 42: 1931-1940. DOI: 10.1016/j.carbon.2004.03.025http://doi.org/10.1016/j.carbon.2004.03.025.
X.M. Yang, S.L. Feng, X.T. Zhou, et al. Interaction between Nuclear Graphite and Molten Fluoride Salts: A Synchrotron Radiation Study of the Substitution of Graphitic Hydrogen by Fluoride Ion. J Phys Chem A, 2012, 116: 985-989. DOI: 10.1021/Jp208990yhttp://doi.org/10.1021/Jp208990y.
G.Q. Zheng, P. Xu, K. Sridharan, et al. Characterization of structural defects in nuclear graphite IG-110 and NBG-18. J Nucl Mater, 2014, 446: 193-199. DOI: 10.1016/j.jnucmat.2013.12.013http://doi.org/10.1016/j.jnucmat.2013.12.013.
L. Hongwei, G. Mingshan, S. Libin. Strength Weibull distribution analysis for the NBG-18 graphite in HTR, Transactions, SMiRT 19, 2007.
T.R. Allen, K. Sridharan, L. Tan, et al. Materials challenges for Generation IV nuclear energy systems. Nucl Technol, 2008, 162: 342-357.
J. Sumita, T. Shibata, I. Fujita, et al. Development of evaluation method with X-ray tomography for material property of IG-430 graphite for VHTR/HTGR. Nucl Eng Des, 2014, 271: 314-317. DOI: 10.1016/j.nucengdes.2013.11.053http://doi.org/10.1016/j.nucengdes.2013.11.053.
C. Karthik, J. Kane, D.P. Butt, et al. Microstructural Characterization of Next Generation Nuclear Graphites. Microsc Microanal, 2012, 18: 272-278. DOI: 10.1017/S1431927611012360http://doi.org/10.1017/S1431927611012360.
C. Karthik, J. Kane, D.P. Butt, et al. In situ transmission electron microscopy of electron-beam induced damage process in nuclear grade graphite. J Nucl Mater, 2011, 412: 321-326. DOI: 10.1016/j.jnucmat.2011.03.024http://doi.org/10.1016/j.jnucmat.2011.03.024.
R.K.L. Su, H.H. Chen, S.L. Fok, et al. Determination of the tension softening curve of nuclear graphites using the incremental displacement collocation method. Carbon, 2013, 57: 65-78. DOI: 10.1016/j.carbon.2013.01.033http://doi.org/10.1016/j.carbon.2013.01.033.
J. Kane, C. Karthik, D.P. Butt, et al. Microstructural characterization and pore structure analysis of nuclear graphite. J Nucl Mater, 2011, 415: 189-197. DOI: 10.1016/j.jnucmat.2011.05.053http://doi.org/10.1016/j.jnucmat.2011.05.053.
J. Sumita, T. Shibata, E. Kunimoto, et al. The Development of a Microstructural Model to Evaluate the Irradiation-Induced Property Changes in IG-110 Graphite using X-ray Tomography. Roy Soc Ch, 2010: 163-170.
L.A. Feldkamp, L.C. Davis,J.W. Kress. Practical Cone-Beam Algorithm. J Opt Soc Am A, 1984, 1: 612-619. Doi: 10.1364/Josaa.1.000612http://doi.org/10.1364/Josaa.1.000612.
H. Wang, L.J. Ma, K.C. Cao, et al. Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon. J Hazard Mater, 2012, 229: 321-330. DOI: 10.1016/j.jhazmat.2012.06.004http://doi.org/10.1016/j.jhazmat.2012.06.004.
A. Buades, B. Coll,J.M. Morel. A non-local algorithm for image denoising. Proc Cvpr Ieee, 2005: 60-65. DOI: 10.1109/CVPR.2005.38http://doi.org/10.1109/CVPR.2005.38.
W. Oh, W.B. Lindquist. Image thresholding by indicator kriging. Ieee T Pattern Anal, 1999, 21: 590-602. DOI: 10.1109/34.777370http://doi.org/10.1109/34.777370.
S. Peth, R. Horn, F. Beckmann, et al. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography. Soil Sci Soc Am J, 2008, 72: 897-907. DOI: 10.2136/sssaj2007.0130http://doi.org/10.2136/sssaj2007.0130.
W.B. Lindquist,A. Venkatarangan. Investigating 3D geometry of porous media from high resolution images. Phys Chem Earth Pt A, 1999, 24: 593-599. DOI: 10.1016/S1464-1895(99)00085-Xhttp://doi.org/10.1016/S1464-1895(99)00085-X.
T.C. Lee, R.L. Kashyap, C.N. Chu. Building Skeleton Models Via 3-D Medial Surface Axis Thinning Algorithms. Cvgip-Graph Model Im, 1994, 56: 462-478. DOI: 10.1006/cgip.1994.1042http://doi.org/10.1006/cgip.1994.1042.
W.B. Lindquist, A. Venkatarangan, J. Dunsmuir, et al. Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J Geophys Res, 2000, 105: 21509-21527. DOI: 10.1029/2000jb900208http://doi.org/10.1029/2000jb900208.
B.J. Zhu, H.H. Cheng, Y.C. Qiao, et al. Porosity and permeability evolution and evaluation in anisotropic porosity multiscale- multiphase-multicomponent structure. Chinese Sci Bull, 2012, 57: 320-327. DOI: 10.1007/s11434-011-4874-4http://doi.org/10.1007/s11434-011-4874-4.
J.M. Sharp, C.T. Simmons. The compleat Darcy: New lessons learned from the first English translation of Les Fontaines publiques de la Ville de Dijon. Ground Water, 2005, 43: 457-460. DOI: 10.1111/j.1745-6584.2005.0076.xhttp://doi.org/10.1111/j.1745-6584.2005.0076.x.
S. Peng, F. Marone,S. Dultz. Resolution effect in X-ray microcomputed tomography imaging and small pore's contribution to permeability for a Berea sandstone. J Hydrol, 2014, 510: 403-411. DOI: 10.1016/j.jhydrol.2013.12.028http://doi.org/10.1016/j.jhydrol.2013.12.028.
X. Yang, S. Feng, X. Zhou, et al. Interaction between nuclear graphite and molten fluoride salts: a synchrotron radiation study of the substitution of graphitic hydrogen by fluoride ion. J Phys Chem A, 2012, 116: 985-989. DOI: 10.1021/jp208990yhttp://doi.org/10.1021/jp208990y.
0
Views
0
Downloads
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution