Che-Ming Ko, Feng LI. Density fluctuations in baryon-rich quark matter. [J]. Nuclear Science and Techniques 27(6):140(2016)
DOI:
Che-Ming Ko, Feng LI. Density fluctuations in baryon-rich quark matter. [J]. Nuclear Science and Techniques 27(6):140(2016) DOI: 10.1007/s41365-016-0141-3.
Density fluctuations in baryon-rich quark matter
摘要
Abstract
At finite baryon chemical potential, the density of a quark matter develops large fluctuations when it undergoes a first-order phase transition. Based on the transport equation derived from the Nambu-Jona-Lasinio (NJL) model, we have studied the density fluctuations in a baryon-rich quark matter that is confined in a finite volume. Allowing the expansion of the quark matter using initial conditions from either a blast wave model or a multiphase transport (AMPT) model, we have further studied the survivability of the density fluctuations as the density and temperature of the quark matter decrease. Possible experimental signatures of the density fluctuations are suggested.
关键词
Keywords
NJL modelBaryon-rich quark matterDensity fluctuationsHeavy Ion collisions
references
T. K. Nayak (STAR Collaboration), Study of the Fluctuations of Net-charge and Net-protons Using Higher Order Moments. Nucl. Phys. A 830, 555c-558c(2009). doi: 10.1016/j.nuclphysa.2009.09.046http://doi.org/10.1016/j.nuclphysa.2009.09.046
M. M. Aggarwal et al. (STAR), Higher moments of net proton multiplicity distributions at RHIC. Phys. Rev. Lett. 105, 022302 (2010).doi: 10.1103/PhysRevLett.105.022302http://doi.org/10.1103/PhysRevLett.105.022302
D. McDonald, Overview of results from phase I of the Beam Energy Scan program at RHIC. EPJ Web Conf. 95, 01009 (2015). doi: 10.1051/epjconf/20159501009http://doi.org/10.1051/epjconf/20159501009
K. Fukushima, Phase diagrams in the three-flavor Nambu-Jona-Lasinio model with the Polyakov loop. Phys. Rev. D 77, 114028 (2008). doi: 10.1103/PhysRevD.77.114028http://doi.org/10.1103/PhysRevD.77.114028
F. Li and C. M. Ko, Spinodal instabilities of baryon-rich quark-gluon plasma in the Polyakov-Nambu-Jona-Lasinio model. Phys. Rev. C 93, 035205 (2016). doi: 10.1103/PhysRevC.93.035205http://doi.org/10.1103/PhysRevC.93.035205
F. Li and C. M. Ko, arXiv:1606.05012 [nucl-th].
N. M. Bratovic, T. Hatsuda, and W. Weise, Role of vector interaction and axial anomaly in the PNJL modeling of the QCD phase diagram. Phys. Lett. B 719, 131-135. (2013). doi: 10.1016/j.physletb.2013.01.003http://doi.org/10.1016/j.physletb.2013.01.003
G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D 14, 3432 (1976). doi: 10.1103/PhysRevD.14.3432http://doi.org/10.1103/PhysRevD.14.3432
M. Buballa, NJL-model analysis of dense quark matter. Phys. Rept. 407, 205-376. (2005). doi: 10.1016/j.physrep.2004.11.004http://doi.org/10.1016/j.physrep.2004.11.004
A. Masayuki and Y. Koichi, Chiral restoration at finite density and temperature. Nucl. Phys. A 504, 668-684. (1989). doi: 10.1016/0375-9474(89)90002-Xhttp://doi.org/10.1016/0375-9474(89)90002-X
Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. Phys. Rev. 122, 345 (1961). doi: 10.1103/PhysRev.122.345http://doi.org/10.1103/PhysRev.122.345
J. Xu, T. Song, C. M. Ko, and F. Li, Elliptic flow splitting as a probe of the QCD phase structure at finite baryon chemical potential. Phys. Rev. Lett. 112, 012301 (2014). doi:10.1103/PhysRevLett.112.012301http://doi.org/10.1103/PhysRevLett.112.012301
S. P. Klevansky, A. Ogura, and J. Hufner, Ann. Phys. 261, 37 (1997).
C. M. Ko, T. Song, F. Li, V. Greco, and S. Plumari, Partonic mean-field effects on matter and antimatter elliptic flows. Nucl. Phys. A 928, 234-246 (2014). doi: 10.1016/j.nuclphysa.2014.05.016http://doi.org/10.1016/j.nuclphysa.2014.05.016
C. Y. Wong, Dynamics of nuclear fluid. VIII. Time-dependent Hartree-Fock approximation from a classical point of view. Phys. Rev. C 25, 1460 (1982). doi: 10.1103/PhysRevC.25.1460http://doi.org/10.1103/PhysRevC.25.1460
G. F. Bertsch and S. Das Gupta, A guide to microscopic models for intermediate energy heavy ion collisions. Phys. Rep. 160, 189-233 (1988). doi: 10.1016/0370-1573(88)90170-6http://doi.org/10.1016/0370-1573(88)90170-6
J. Steiheimer and J. Randrup, Spinodal density enhancements in simulations of relativistic nuclear collisions. Phys. Rev. C 87, 054903 (2013). doi: 10.1103/PhysRevC.87.054903http://doi.org/10.1103/PhysRevC.87.054903
M. A. Stephanov, Non-Gaussian fluctuations near the QCD critical point. Phys. Rev. Lett. 102, 032301 (2009). doi: 10.1103/PhysRevLett.102.032301http://doi.org/10.1103/PhysRevLett.102.032301
Z. W. Lin, C. M. Ko, B. A. Li, et al., Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). doi: 10.1103/PhysRevC.72.064901http://doi.org/10.1103/PhysRevC.72.064901
C. Herold, M. Nahrgang, and I. Mishustin, and M. Bleicher, J. Phys. Conf. Ser. 509, 012065 (2014).
J. Steiheimer, J. Randrup, and V. Koch, Non-equilibrium phase transition in relativistic nuclear collisions: Importance of the equation of state. Phys. Rev. C 89, 034901 (2014). doi: 10.1103/PhysRevC.89.034901http://doi.org/10.1103/PhysRevC.89.034901
B. H. Alver, C. Gombeaud, M. Luzum, J. Y. Ollitrault, Triangular flow in hydrodynamics and transport theory. Phys. Rev. C 82, 034913 (2010). doi: 10.1103/PhysRevC.82.034913http://doi.org/10.1103/PhysRevC.82.034913
S. Wang, Y. Z. Jiang, Y. M. Liu, et al., Measurement of collective flow in heavy-ion collisions using particle-pair correlations. Phys. Rev. C 44, 1091 (1991). doi: 10.1103/PhysRevC.44.1091http://doi.org/10.1103/PhysRevC.44.1091
N. Borghini, P. M. Dinh, and J. Y. Ollitrault, Flow analysis from multiparticle azimuthal correlations. Phys. Rev. C 64, 054901 (2001). doi: 10.1103/PhysRevC.64.054901http://doi.org/10.1103/PhysRevC.64.054901
L. Xiong, Z. G. Wu, C. M. Ko, and J. Q. Wu, Dielectron production from nucleus-nucleus collisions. Nucl. Phys. A 512, 772-786 (1990). doi: 10.1016/0375-9474(90)90234-Dhttp://doi.org/10.1016/0375-9474(90)90234-D
T. Galatyuk, P. M. Hohler, R. Rapp, F. Seck, and J. Stroth, Thermal dileptons from coarse-grained transport as fireball probes at SIS energies. Eur. Phys. J. A 52, 131 (2016). doi: 10.1140/epja/i2016-16131-1http://doi.org/10.1140/epja/i2016-16131-1
M. Gyulassy and X. N. Wang, HIJING 1.0: A Monte Carlo program for parton and particle production in high energy hadronic and nuclear collisions. Comput. Phys. Commun. 83, 307-331. (1994). doi: 10.1016/0010-4655(94)90057-4http://doi.org/10.1016/0010-4655(94)90057-4
T. Sjöstrand, High-energy-physics event generation with PYTHIA 5.7 and JETSET 7.4. Comput. Phys. Commun., 82, 74-89. (1994). doi: 10.1016/0010-4655(94)90132-5http://doi.org/10.1016/0010-4655(94)90132-5
B. Zhang, ZPC 1.0.1: a parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun., 109, 193-206 (1998). doi: 10.1016/S0010-4655(98)00010-1http://doi.org/10.1016/S0010-4655(98)00010-1
B. A. Li and C. M. Ko, Formation of superdense hadronic matter in high energy heavy-ion collisions. Phys. Rev. C 52, 2037 (1995). doi: 10.1103/PhysRevC.52.2037http://doi.org/10.1103/PhysRevC.52.2037
B. A. Li and A. T. Sustich, B. Zhang, and C. M. Ko, Studies of superdense hadronic matter in a relativistic transport model. Int. J. Mod. Phys. E 10, 267 (2001). doi: 10.1142/S0218301301000575http://doi.org/10.1142/S0218301301000575