Chen-Chong Yue, Liu-Li Chen, Ke-Feng Lyu, et al. Flow characteristics of natural circulation in a lead-bismuth eutectic loop. [J]. Nuclear Science and Techniques 28(3):39(2017)
DOI:
Chen-Chong Yue, Liu-Li Chen, Ke-Feng Lyu, et al. Flow characteristics of natural circulation in a lead-bismuth eutectic loop. [J]. Nuclear Science and Techniques 28(3):39(2017) DOI: 10.1007/s41365-017-0187-x.
Flow characteristics of natural circulation in a lead-bismuth eutectic loop
摘要
Abstract
Lead and lead-alloys are proposed in future advanced nuclear system as coolant and spallation target. To test the natural circulation and gas-lift, and obtain thermal-hydraulics data for computational fluid dynamics (CFD) and system code validation, a lead-bismuth eutectic (LBE) rectangular loop, the KYLIN-II Thermal Hydraulic natural circulation test loop, has been designed and constructed by the FDS team. In this paper, theoretical analysis on natural circulation thermal-hydraulic performance is described and the steady state natural circulation experiment is performed. The results indicated that the natural circulation capability depends on the loop resistance and the temperature and center height differences between the hot and cold legs. The theoretical analysis results agree well with, while the CFD deviate from, the experimental results.
OECD/NEA: Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies. OECD/NEA No.6197. 2007 Edition. ISBN 978-92-64-99002-9, 15-26.
Y.C. Wu, Y.Q. Bai, Y. Song, et al. Conceptual Design of China Lead-based Research Reactor CLEAR-I. Nuclear Science and Engineering. 34(2): 201-208, 2014 (in Chinese).
A. Stanculescu. IAEA activities in the area of partitioning and transmutation. Nucl Instr and Methods in Phys Res Section A: 562(2): 614-617, 2006. DOI: 10.1016/j.nima.2006.02.045http://doi.org/10.1016/j.nima.2006.02.045
X. Cheng, J.E. Cahalan, P.J. Finch. Safety analysis of an accelerator driven test facility. Nucl. Eng. Des. 229, 289-306, 2004. DOI: 10.1016/j.nucengdes.2004.01.003http://doi.org/10.1016/j.nucengdes.2004.01.003
A. Alemberti, V. Smirnov, C.F. Smith, et al. Overview of lead-cooled fast reactor activities. Progress in Nuclear Energy, 2013. DOI: 10.1016/j.pnucene.2013.11.011http://doi.org/10.1016/j.pnucene.2013.11.011
C.F. Smith, W.G. Halsey, N.W. Brown, et al. SSTAR: The US lead-cooled fast reactor (LFR). J. Nucl. Mater. 376(3): 255-259, 2008. DOI: 10.1016/j.jnucmat.2008.02.049http://doi.org/10.1016/j.jnucmat.2008.02.049
C.B. Davis. Thermal-hydraulic analyses of transients in an actinide-burner reactor cooled by forced convection of lead-bismuth. Nucl. Eng. Des. 224(2): 149-160, 2003. DOI: 10.1016/S0029-5493(03)00104-3http://doi.org/10.1016/S0029-5493(03)00104-3
W. Ma, E. Bubelis, A. Karbojian, et al. Transient experiments from the thermal-hydraulic ADS lead bismuth loop (TALL) and comparative TRAC/AAA analysis. Nucl. Eng. Des. 236(13): 1422-1444, 2006. DOI: 10.1016/j.nucengdes.2006.01.006http://doi.org/10.1016/j.nucengdes.2006.01.006
W. Ma, A. Karbojian, B.R. Sehgal. Experimental study on natural circulation and its stability in a heavy liquid metal loop. Nucl. Eng. Des. 237, 1838-1847, 2007. DOI: 10.1016/j.nucengdes.2007.02.023http://doi.org/10.1016/j.nucengdes.2007.02.023
M. Tarantino, S. De Grandis, G. Benamati, et al. Natural circulation in a liquid metal one-dimensional loop. J. Nucl. Mater. 376(3): 409-414, 2008. DOI: 10.1016/j.jnucmat.2008.02.080http://doi.org/10.1016/j.jnucmat.2008.02.080
A. Borgohain, B.K. Jaiswal, N.K. Maheshwari, et al. Natural circulation studies in a lead bismuth eutectic loop. Progress in Nuclear Energy. 53(4): 308-319, 2011. DOI: 10.1016/j.pnucene.2010.10.004http://doi.org/10.1016/j.pnucene.2010.10.004
Y.C. Wu, Q.Y. Huang, Z.Q. Zhu, et al. Progress in design and development of series liquid lithium-lead experimental loops in China. Nuclear Science and Engineering. 29(2):161-169, 2009 (in Chinese).
Y.C. Wu, FDS Team. Conceptual design activities of FDS series fusion power plants in China. Fusion Eng. Des. 81(23-24), 2713-2718, 2006. DOI: 10.1016/j.fusengdes.2006.07.068http://doi.org/10.1016/j.fusengdes.2006.07.068
Y.C. Wu, FDS Team. Conceptual design of the China fusion power plant FDS-II. Fusion Eng. Des. 83(10-12), 1683-1689, 2008. DOI: 10.1016/j.fusengdes.2008.06.048http://doi.org/10.1016/j.fusengdes.2008.06.048
Y.C. Wu, J.Q. Jiang, M.H. Wang, et al. A fusion-driven subcritical system concept based on viable technologies. Nucl. Fusion. 51(10): 103036, 2011. DOI: 10.1088/0029-5515/51/10/103036http://doi.org/10.1088/0029-5515/51/10/103036
Y.C. Wu. Design status and development strategy of China liquid lithium-lead blankets and related material technology. J. Nucl. Mater. 367-370:1410-1415, 2007. DOI: 10.1016/j.jnucmat.2007.04-031http://doi.org/10.1016/j.jnucmat.2007.04-031
Y.C. Wu, FDS Team. Conceptual design and testing strategy of a dual functional lithium-lead test blanket module in ITER and EAST. Nucl. Fusion. 47(11), 1533-1539, 2007. DOI: 10.1088/0029-5515/47/11/015http://doi.org/10.1088/0029-5515/47/11/015
Y.C. Wu, FDS Team. Fusion-based hydrogen production reactor and its material selection. J. Nucl. Mater. 386-388:122-126, 2009. DOI: 10.1016/j.jnucmat.2008.12.075http://doi.org/10.1016/j.jnucmat.2008.12.075
Y.C. Wu, J.P. Qian, J.N. Yu. The fusion-driven hybrid system and its material selection. J. Nucl. Mater. 307-311:1629-1636, 2002. DOI: 10.1016/S0022-3115(02)01272-2http://doi.org/10.1016/S0022-3115(02)01272-2
Q.Y. Huang, C.J. Li, Y. Li, et al. Progress in development of China low activation martensitic steel for fusion application. J. Nucl. Mater. 367-370:142-146, 2007. DOI: 10.1016/j.jnucmat.2007.03.153http://doi.org/10.1016/j.jnucmat.2007.03.153
J.H. Choa, A. Batta, V. Casamassima, et al. Benchmarking of thermal hydraulic loop models for lead-alloy cooled advanced nuclear Energy System (LACANES), Phase-I: Isothermal Steady State Forced Convection. J. Nucl. Mater. 415, 404-414, 2011. DOI: 10.1016/j.jnucmat.2011.04.043http://doi.org/10.1016/j.jnucmat.2011.04.043