1.Chengdu University of Technology, Chengdu 610059, China
2.National Ocean Technology Center, Tianjin 300112, China
Guo-Qiang Zeng zgq@cdut.edu.cn
Scan for full text
Chuan-Hao Hu, Guo-Qiang Zeng, Liang-Quan Ge, et al. Analog rise-time discriminator for CdZnTe detector. [J]. Nuclear Science and Techniques 28(4):52(2017)
Chuan-Hao Hu, Guo-Qiang Zeng, Liang-Quan Ge, et al. Analog rise-time discriminator for CdZnTe detector. [J]. Nuclear Science and Techniques 28(4):52(2017) DOI: 10.1007/s41365-017-0204-0.
Due to variable time for charge collection, energy resolution of nuclear detectors declines, especially compound semiconductordetectors like cadmium zinc telluride (CdZnTe) detector,. To solve this problem, an analog rise-time discriminator based on charge comparison principle is designed. The reference charge signal after attenuation is compared with the deconvoluted and delayed current signal. It is found that the amplitude of delayed current signal is higher than that of the reference charge signal when rise time of the input signal is shorter than the discrimination time, thus generating gating signal and triggering DMCA (digital multi-channel analyzer) to receive the total integral charge signal. When rise time of the input signal is longer than discrimination time, DMCA remains inactivated and the corresponding total integral charge signal is abandoned. Test results show that combination of the designed rise-time discriminator and DMCA can reduce hole tailing of CdZnTe detector significantly. Energy resolution of the system is 0.98%@662keV and it is still excellent under high counting rates.
Analog rise-time discriminatorCdZnTe detectorCharge comparison principle
J. Franc, P. Höschl, E. Belas et al., CdTe and CdZnTe crystals for room temperature gamma-ray detectors. Nucl. Instrum. Methods Phys. Res. A. 434, 146-151 (1999). doi: 10.1016/S0168-9002(99)00448-9http://doi.org/10.1016/S0168-9002(99)00448-9
T. E Schlesinger, J.E Toney, H Yoon et al., Cadmium zinc telluride and its use as a nuclear radiation detector material. Polym. Mater. Sci. Eng. 32, 103-189 (2001). doi: 10.1016/S0927-796X(01)00027-4http://doi.org/10.1016/S0927-796X(01)00027-4
L. Abbene, S. Del Sordo, F. Fauci et al., Spectroscopic response of a CdZnTe multiple electrode detector. Nucl. Instrum. Methods Phys. Res. A. 583, 324-331 (2007). doi: 10.1016/j.nima.2007.09.015http://doi.org/10.1016/j.nima.2007.09.015
G. Yang, A.E. Bolotnikov, P.M. Fochuk et al., Post-growth thermal annealing study of CdZnTe for developing room-temperature X-ray and gamma-ray detectors. Journal of Crystal Growth. 379, 16-20 (2013). doi: 10.1016/j.jcrysgro.2012.11.041http://doi.org/10.1016/j.jcrysgro.2012.11.041
H. Yücel, E. Uyar, A.N. Esen., Measurements on the spectroscopic performance of CdZnTe coplanar grid detectors. Appl. Radiat. Isot. 70, 1608-1615 (2012). doi: 10.1016/j.apradiso.2012.04.027http://doi.org/10.1016/j.apradiso.2012.04.027
P. N. Luke, Single-polarity charge sensing in ionization detectors using coplanar electrodes. Appl. Phys. Lett. 65, 2884-2886 (1994). doi: 10.1063/1.112523http://doi.org/10.1063/1.112523
P. N. Luke, Unipolar charge sensing with coplanar electrodes-application to semiconductor detectors. IEEE Trans. Nucl. Sci. 42, 207-213 (1995). doi: 10.1109/23.467848http://doi.org/10.1109/23.467848
Zhong He, Potential distribution within semiconductor detectors using coplanar electrodes. Nucl. Instrum. Methods Phys. Res. A. 365, 572-575 (1995). doi: 10.1016/0168-9002(95)00676-1http://doi.org/10.1016/0168-9002(95)00676-1
C. Szeles, Advances in the crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors. IEEE Trans. Nucl. Sci. 51, 1242-1249 (2004). doi: 10.1109/TNS.2004.829391http://doi.org/10.1109/TNS.2004.829391
H. Chen, S. Awadalla, K. Iniewski et al., Characterization of large cadmium zinc telluride crystals grown by traveling heater method. Appl. Phys, 103, 014903 (2008). doi: 10.1063/1.2828170http://doi.org/10.1063/1.2828170
Asher Shor, Yossi Eisen, Israel Mardor, Spectroscopy with CdZnTe γ- and X-ray detectors by modifying the electron trapping to compensate for incomplete charge collection caused by large hole trapping. Nucl. Instrum. Methods Phys. Res. A. 426, 491-496 (1999). doi: 10.1016/S0168-9002(99)00023-6http://doi.org/10.1016/S0168-9002(99)00023-6
GF. Knoll, Radiation Detection and Measurement, third Edition (New York, John Wiley & Sons, Inc, 2000), pp. 353-357
Jan Töke, Michael J. Quinlan, Wojtek Gawlikowicz et al., A simple method for rise-time discrimination of slow pulses from charge-sensitive preamplifiers. Nucl. Instrum. Methods Phys. Res. A. 595, 460-463 (2008). doi: 10.1016/j.nima.2008.07.024http://doi.org/10.1016/j.nima.2008.07.024
Vahid Esmaeili-sani, Ali Moussavi-zarandi, Nafiseh Akbar-ashrafi et al., Neutron-gamma discrimination based on bipolar trapezoidal pulse shaping using FPGAs in NE213. Nucl. Instrum. Methods Phys. Res. A. 694, 113-118 (2012). doi: 10.1016/j.nima.2012.08.025http://doi.org/10.1016/j.nima.2012.08.025
Cosimo Imperiale, Alessio Imperiale, On nuclear spectrometry pulses digital shaping and processing. Measurement. 30, 49-73 (2001). doi: 10.1016/S0263-2241(00)00057-9http://doi.org/10.1016/S0263-2241(00)00057-9
N Auricchio, L Amati, A Basili et al., Twin shaping filter techniques to compensate the signals from CZT/CdTe detectors. IEEE Trans. Nucl. Sci. 52, 1982-1988 (2005). doi: 10.1109/TNS.2005.856884http://doi.org/10.1109/TNS.2005.856884
D. S. McGregor, Z. He, H. A. Seifert et al., Single charge carrier type sensing with a parallel strip pseudo-Frisch-grid CdZnTe semiconductor radiation detector. Appl. Phys. Lett. 72, 792-794 (1998). doi: 10.1063/1.120895http://doi.org/10.1063/1.120895
M Mayer, L.A Hamel, O Tousignant et al., Signal formation in a CdZnTe imaging detector with coplanar pixel and control electrodes. Nucl. Instrum. Methods Phys. Res. A. 422, 190-194 (1999). doi: 10.1016/S0168-9002(98)01126-7http://doi.org/10.1016/S0168-9002(98)01126-7
A. Niemelä, H. Sipilä, V. I. Ivanov, Improving CdZnTe X-ray detector performance by cooling and rise time discrimination. Nucl. Instrum. Methods Phys. Res. A. 377, 484-486 (1996). doi: 10.1016/0168-9002(96)00028-9http://doi.org/10.1016/0168-9002(96)00028-9
V.T Jordanov. Deconvolution of pulses from a detector-amplifier configuration. Nucl. Instrum. Methods Phys. Res., Sect. A, 351, 592-594 (1994). doi: 10.1016/0168-9002(94)91394-3http://doi.org/10.1016/0168-9002(94)91394-3
Alan V. Oppenheim, Alan S. Willsky, Signals & Systems (Beijing, Tsinghua University Press, 1999), p. 74
0
Views
0
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution