1.Division of Physical Biology and CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS), Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
4.Center for Clinical and Translational Medicine, Shanghai Industrial Technology Institute, Shanghai 201203, China
Xue-Ling Li. E-mail address: xlli@scbit.org
Jun-Hong Lü. E-mail address: lujunhong@sinap.ac.cn
Scan for full text
Ya-Di Wang, Xue-Ling Li, Zhi-Xiao Liu, et al. Discrimination of foodborne pathogenic bacteria using synchrotron FTIR microspectroscopy. [J]. Nuclear Science and Techniques 28(4):49(2017)
Ya-Di Wang, Xue-Ling Li, Zhi-Xiao Liu, et al. Discrimination of foodborne pathogenic bacteria using synchrotron FTIR microspectroscopy. [J]. Nuclear Science and Techniques 28(4):49(2017) DOI: 10.1007/s41365-017-0209-8.
Traditional Fourier transform infrared (FTIR) spectroscopy has been recognized as a valuable method to characterize and classify kinds of microorganisms. In this study, combined with multivariate statistical analysis, synchrotron radiation-based FTIR (SR-FTIR) micro- spectroscopy was applied to identify and discriminate 10 foodborne bacterial strains. Our results show that the whole spectra (3000–900 cm ,−1,) and three subdivided spectral regions (3000–2800, 1800–1500 and 1200–900 cm,−1, representing lipids, proteins and polysaccharides, respectively) can be used to type bacteria. Either the whole spectra or the three subdivided spectra is good for discriminating the bacteria at levels of species and subspecies, but the whole spectra should be given preference at the genus level. The findings demonstrate that SR-FTIR microspectroscopy is a powerful tool to identify and classify foodborne pathogenic bacteria at the genus, species and subspecies level.
Synchrotron FTIR microspectroscopyFoodborne pathogensBacterial discriminationSubdivided spectral regionsMultivariate statistical analysis
J W Law, N S Ab Mutalib, K G Chan, et al. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Frontiers in Microbiology, 2014, 5: 770. DOI: 10.3389/fmicb.2014.00770http://doi.org/10.3389/fmicb.2014.00770
M Wenning and S Scherer. Identification of microorganisms by FTIR spectroscopy: perspectives and limitations of the method. Appl Microbiol Biotechnol, 2013, 97(16): 7111-20. DOI: 10.1007/s00253-013-5087-3http://doi.org/10.1007/s00253-013-5087-3
D Naumann. Infrared spectroscopy in microbiology. Encyclopedia of Analytical Chemistry, 2000: 1-29. DOI: 10.1002/9780470027318.a0117http://doi.org/10.1002/9780470027318.a0117
J J Ojeda and M Dittrich. Fourier transform infrared spectroscopy for molecular analysis of microbial cells. Methods in Molecular Biology, 2012, 881: 187-211. DOI: 10.1007/978-1-61779-827-6_8http://doi.org/10.1007/978-1-61779-827-6_8.
A Alvarez-Ordóñez, D J M Mouwen, M López, et al. Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. Journal of Microbiological Methods, 2011, 84(3): 369-378. DOI: 10.1016/j.mimet.2011.01.009http://doi.org/10.1016/j.mimet.2011.01.009
S Pegram. Use of Fourier Transform Infrared Spectroscopy for the Identification of Bacteria of Importance to the Food Industry. Master's thesis, Utah state university, 2007.
J P Maity, S Kar, C M Lin, et al. Identification and discrimination of bacteria using Fourier transform infrared spectroscopy. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2013, 116: 478-484. DOI: 10.1016/j.saa.2013.07.062http://doi.org/10.1016/j.saa.2013.07.062
R Davis and L J Mauer. Fourier transform infrared (FT-IR) spectroscopy: A rapid tool for detection and analysis of foodborne pathogenic bacteria. Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2010: 1582-1594.
J Schmitt and H C Flemming. FTIR-spectroscopy in microbial and material analysis. International Biodeterioration & Biodegradation, 1998, 41(1): 1-11. DOI: 10.1016/S0964-8305(98)80002-4http://doi.org/10.1016/S0964-8305(98)80002-4
S Garip. The Characterization of Bacteria with Fourier Transform Infrared (FTIR) Spectroscopy. Master's thesis, Middle East Technical University, 2005.
S Passot, J Gautier, F Jamme, et al. Understanding the cryotolerance of lactic acid bacteria using combined synchrotron infrared and fluorescence microscopies. Analyst, 2015, 140(17): 5920-5928. DOI: 10.1039/c5an00654fhttp://doi.org/10.1039/c5an00654f
D Naumann, D Helm and H Labischinski. Microbiological characterizations by FT-IR spectroscopy. Nature, 1991, 351: 81-82. DOI: 10.1038/351081a0http://doi.org/10.1038/351081a0
P Zarnowiec, Ł Lechowicz, G Czerwonka, et al. Fourier transform infrared spectroscopy (FTIR) as a tool for the identification and differentiation of pathogenic bacteria. Current Medicinal Chemistry, 2015, 22(14): 1710-1718. DOI: 10.2174/0929867322666150311152800http://doi.org/10.2174/0929867322666150311152800
L J Yang, J Wang, Z J Li, et al. Rapid differentiation and identification of Shigella sonnei and Escherichia coli O157: H7 by Fourier transform infrared spectroscopy and multivariate statistical analysis. Advanced Materials Res., 2014, 926-930: 1116-1119. DOI: 10.4028/www.scientific.net/AMR.926-930.1116http://doi.org/10.4028/www.scientific.net/AMR.926-930.1116
H Y N Holman, M C Martin, E A Blakely, et al. IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy. Biopolymers, 2000, 57(6): 329-335. DOI: 10.1002/1097-0282(2000)57:6<329:AID-BIP20>3.0.CO;2-2http://doi.org/10.1002/1097-0282(2000)57:6<329:AID-BIP20>3.0.CO;2-2
A J Probst, H Y Holman, T Z DeSantis, et al. Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm. ISME J, 2013, 7(3): 635-51. DOI: 10.1038/ismej.2012.133http://doi.org/10.1038/ismej.2012.133
J Yan, Z Shao, X Chen, et al. Application of synchrotron FTIR techniques in biomedical fields. Progress in Chemistry 2008, 20(11): 1768-1778.
S Ling, Z Shao and X Chen. Application of synchrotron FTIR imaging for cells. Progress in Chemistry 2014, 26(1): 178-192. DOI: 10.7536/PC130662http://doi.org/10.7536/PC130662
S Ling, Y Huang, L Huang, et al. Application of synchrotron FTIR microspectroscopy and mapping in analytical chemistry. Progress in Chemistry, 2013, 25(5): 821-831.
D Ami, P Mereghetti and S M Doglia. Multivariate analysis for Fourier transform infrared spectra of complex biological systems and processes. Multivariate Analysis in Management, Engineering and the Sciences, 2013: 189-220. DOI: 10.5772/53850http://doi.org/10.5772/53850
A Naumann. A novel procedure for strain classification of fungal mycelium by cluster and artificial neural network analysis of Fourier transform infrared (FTIR) spectra. Analyst, 2009, 134(6): 1215-1223. DOI: 10.1039/b821286dhttp://doi.org/10.1039/b821286d
0
Views
0
Downloads
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution