Xu-Ying Lan, Dong-Xu Liang, Cheng-Wen Mao. Scan system for arbitrary-shaped samples at the synchrotron radiation facility. [J]. Nuclear Science and Techniques 28(5):60(2017)
DOI:
Xu-Ying Lan, Dong-Xu Liang, Cheng-Wen Mao. Scan system for arbitrary-shaped samples at the synchrotron radiation facility. [J]. Nuclear Science and Techniques 28(5):60(2017) DOI: 10.1007/s41365-017-0210-2.
Scan system for arbitrary-shaped samples at the synchrotron radiation facility
摘要
Abstract
XRF(X-ray fluorescence) scan methodology is important for elemental mapping of samples at a synchrotron radiation facility. To save the experiment time and improve the experiment efficiency, one should develop an efficient XRF scan method. In this paper, a new scan mode is presented. It can map arbitrary-shaped areas without stopping the motors. The control and data acquisition system integrates motor controlling, detector triggering, and data acquisition and storage. The system realizes the arbitrary-shaped 2D-mapping and fluorescence data acquisition synchronously. SR-XRF mapping has been performed with a standard gold mask to verify the validity of this method at beamline BL15U1 of the Shanghai Synchrotron Radiation Facility. The results show that this method reduces the total scan time and improves the experiment efficiency.
C.K. Bhat, D. Joseph, S. Pandita et al., Non-destructive analysis of didymium and praseodymium molybdate crystals using energy dispersive X-ray fluorescence technique. Radiat. Phys. Chem. 125, 9-13 (2016). doi: 10.1016/j.radphyschem.2016.02.028http://doi.org/10.1016/j.radphyschem.2016.02.028
M.L. Lord, F.E. McNeill, J.L. Grafe et al., A phantom-based feasibility study for detection of gadolinium in bone in-vivo using X-ray fluorescence. Appl. Radiat. Isot 112, 103-109 (2016). doi: 10.1016/j.apradiso.2016.03.021http://doi.org/10.1016/j.apradiso.2016.03.021
I. Ramos, I.M. Pataco, M.P. Mourinho et al., Elemental mapping of biofortified wheat grains using micro X-ray fluorescence. Spectrochim. Acta, Part B 120, 30-36 (2016). doi: 10.1016/j.sab.2016.03.014http://doi.org/10.1016/j.sab.2016.03.014
J.H. Dycus, W. Xu, X. Sang et al., Influence of experimental conditions on atom column visibility in energy dispersive X-ray spectroscopy. Ultramicroscopy 171, 1-7 (2016). doi: 10.1016/j.ultramic.2016.08.013http://doi.org/10.1016/j.ultramic.2016.08.013
M.A. Phedorin, V.A. Bobrov, K.V. Zolotarev, Peat archives from Siberia: Synchrotron beam scanning with X-ray fluorescence measurements. Nucl. Instrum. Methods Phys. Res., Sect. A 575, 199-201 (2007). doi: 10.1016/j.nima.2007.01.067http://doi.org/10.1016/j.nima.2007.01.067
K. Hayashi, N. Happo, S. Hosokawa, Applications of X-ray fluorescence holography to determine local lattice distortions. J. Electron. Spectrosc. Relat. Phenom. 195, 337-346 (2014). doi: 10.1016/j.elspec.2014.07.008http://doi.org/10.1016/j.elspec.2014.07.008
L. Lu, J.W. Huang, D. Fan et al., Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression:A study with simultaneous in situ synchrotron x-ray imaging and diffraction. Acta Mater, 120, 86-94 (2016). doi: 10.1016/j.actamat.2016.08.029http://doi.org/10.1016/j.actamat.2016.08.029
F. Yan, EPICS-based motion control and data acquisition system on synchrotron radiation microfocus station. Ph. D. Thesis, Shanghai: shanghai institute of applied physics, chinese academy of sciences, 2011.
P. Wrobel, M. Czyzycki, L. Furman et al., Labview control software for scanning micro-beam X-ray fluorescence spectrometer. Talanta 93, 186-192 (2012). doi: 10.1016/j.talanta.2012.02.010http://doi.org/10.1016/j.talanta.2012.02.010
F. Yan, J.C. Zhang, A.G. Li et al., Fast scanning X-ray microprobe fluorescence imaging based on synchrotron radiation. Acta. Phys.Sin. 60(9), 1-7 (2011). doi: 10.7498/aps.60.090702http://doi.org/10.7498/aps.60.090702
S. Stepanov, H. Mark, W.Y. Derek et al., Fast fluorescence techniques for crystallography beamlines. J. Appl. Crystallogr. 44, 772-778 (2011). doi: 10.1107/S0021889811016748http://doi.org/10.1107/S0021889811016748
Fast X-ray fluorescence imaging in continuous scanning mode at beamline L. http://hasyweb.desy.de/science/annual_reports/2005_report/part1/contrib/25/15448.pdfhttp://hasyweb.desy.de/science/annual_reports/2005_report/part1/contrib/25/15448.pdf
Pelz , M. Philipp, G. Sicairos et al., On-the-fly scans for X-ray ptychography. Appl. Phys. Lett. 105, 251101 (2014). doi: 10.1063/1.4904943http://doi.org/10.1063/1.4904943
F.X. Kartner, F. Ahr, A.L. Calendron et al., AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. A 829, 24-29 (2016). doi: 10.1016/j.nima.2016.02.080http://doi.org/10.1016/j.nima.2016.02.080
J.M. Sampaio, T.I. Madeira, M. Guerra et al., Relativistic calculations of K-,L- and M-shell x-ray production cross-sections by electron impact for Ne, Ar, Kr, Xe, Rn and Uuo. J. Quant. Spectrosc. Radiat. Transfer 182, 87-93 (2016). doi: 10.1016/j.jqsrt.2016.05.012http://doi.org/10.1016/j.jqsrt.2016.05.012
XPS Series Universal High-Performance Motion Controller/Driver. http://www.newport.com/XPS-Series-Motion-Controllers-Universal-High-Perf/300904/1033/info.aspxhttp://www.newport.com/XPS-Series-Motion-Controllers-Universal-High-Perf/300904/1033/info.aspx.
F. Yan, A.G. Li, K. Yang. EPICS-based data acquisition system of hard X-ray microfocus station. Nucl. Tech. 32(11), 801-805 (2009). doi: 10.7498/aps.60.090702http://doi.org/10.7498/aps.60.090702
L.L. Zhang, S. Yan, S. Jiang et al., Hard X-ray micro-focusing beamline at SSRF. Nucl. Sci. Tech. 26, 060101 (2015). doi: 10.13538/j.1001-8042/nst.26.060101http://doi.org/10.13538/j.1001-8042/nst.26.060101
T. Mooney.synApps:sscan.http://www.aps.anl.gov/bcda/synApps/sscan/sscan.htmlhttp://www.aps.anl.gov/bcda/synApps/sscan/sscan.html.
B. Franksen.State Notation Language and Sequencer. http://www-csr.bessy.de/control/SoftDist/sequencer/http://www-csr.bessy.de/control/SoftDist/sequencer/.