1.Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
2.School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3.Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
Long Zhao ryuuchou@hotmail.com
Scan for full text
Zhen Dong, Wei-Jin Yuan, Chao Liu, et al. Th (IV) and U(VI) removal by TODGA in ionic liquids: Extraction behavior and mechanism, and radiation effect. [J]. Nuclear Science and Techniques 28(5):62(2017)
Zhen Dong, Wei-Jin Yuan, Chao Liu, et al. Th (IV) and U(VI) removal by TODGA in ionic liquids: Extraction behavior and mechanism, and radiation effect. [J]. Nuclear Science and Techniques 28(5):62(2017) DOI: 10.1007/s41365-017-0214-y.
Extraction behavior of thorium(IV) and uranium(VI) from nitric acid (HNO,3,) was studied using N,N,N’,N’-Tetraoctyldiglycolamide (TODGA) as extractant in different ionic liquids, and isooctane as comparison. Slope analyses with varying HNO,3, concentrations and diluents revealed the extraction mechanism. With increasing length of alkyl chain and HNO,3, concentration, the extraction mechanism of TODGA/IL system changed from cation exchange to neutral complex or/and anion exchange, and the molar ratio between TODGA and metal ions varied gradually from 2:1 to 1:1 for Th(IV) and 3:1 to 1:1 for U(VI). The kinetics and thermodynamic studies of Th(IV) and U(VI) by the best TODGA/[C,2,mim][NTf,2,] system showed that the exaction reached equilibrium within 2 h and extraction reactions were endothermic. Compared to TODGA/isooctane system, TODGA/[C,2,mim][NTf,2,] system presented higher radiation stability under γ-irradiation. Therefore, it would have a promising application in spent fuel reprocessing.
ExtractionTODGAIonic liquidsThorium(IV) and Uranium(VI)Radiation effect
S.H. Ha, R.N. Menchavez, Y.M. Koo, Reprocessing of spent nuclear waste using ionic liquids. Korean J Chem Eng, 2010, 27: 1360-1365. DOI: 10.1007/s11814-010-0386-1http://doi.org/10.1007/s11814-010-0386-1
E. Merle-Lucotte, D. Heuer, M. Allibert, et al., Introduction to the physics of molten salt reactors, in: Materials Issues for Generation IV Systems, Springer, 2008, 501-521. DOI: 10.1007/978-1-4020-8422-5_25http://doi.org/10.1007/978-1-4020-8422-5_25
A.M. Dodson, R.A. McCann, Investigation of thermal feedback design for improved load-following capability of thorium molten salt reactors, in: Green Technologies Conference, 2013, IEEE, IEEE, 2013, 215-219. DOI: 10.1109/GreenTech.2013.40http://doi.org/10.1109/GreenTech.2013.40
M.R. Yaftian, L. Hassanzadeh, M.E. Eshraghi, et al., Solvent extraction of thorium (IV) and europium (III) ions by diphenyl-N,N-dimethylcarbamoylmethylphosphine oxide from aqueous nitrate media. Sep Purif Technol, 2003, 31: 261-268. DOI: 10.1016/S1383-5866(02)00203-4http://doi.org/10.1016/S1383-5866(02)00203-4
S. Panja, P.K. Mohapatra, S.C. Tripathi, et al., A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep Purif Technol, 2012, 96: 289-295. DOI: 10.1016/j.seppur.2012.06.015http://doi.org/10.1016/j.seppur.2012.06.015
H.Y. Zhou, Y.Y. Ao, J. Yuan, et al., Extraction mechanism and gamma-radiation effect on the removal of Eu3+ by a novel BTPhen/[C(n)mim][NTf2] system in the presence of nitric acid. Rsc Adv, 2014, 4: 45612-45618. DOI: 10.1039/C4RA07662Ahttp://doi.org/10.1039/C4RA07662A
A. Sengupta, P.K. Mohapatra, M. Iqbal, et al., A highly efficient solvent system containing functionalized diglycolamides and an ionic liquid for americium recovery from radioactive wastes. Dalton Trans, 2012, 41: 6970-6979. DOI: 10.1039/C2DT12364Ahttp://doi.org/10.1039/C2DT12364A
T.J. Bell, Y. Ikeda, The application of novel hydrophobic ionic liquids to the extraction of uranium(VI) from nitric acid medium and a determination of the uranyl complexes formed. Dalton Trans, 2011, 40: 10125-10130. DOI: 10.1039/c1dt10755khttp://doi.org/10.1039/c1dt10755k
S.A. Ansari, P.N. Pathak, V.K. Manchanda, et al., N,N,N ',N '-Tetraoctyl diglycolamide (TODGA): a promising extractant for actinide-partitioning from high-level waste (HLW). Solvent Extr Ion Exc, 2005, 23: 463-479. DOI: 10.1081/Sei-200066296http://doi.org/10.1081/Sei-200066296
S.A. Ansari, D.R. Prabhu, R.B. Gujar, et al., Counter-current extraction of uranium and lanthanides from simulated high-level waste using N,N,N',N'-tetraoctyl diglycolamide. Sep Purif Technol, 2009, 66: 116-117. DOI: 10.1016/j.seppur.2008.11.019http://doi.org/10.1016/j.seppur.2008.11.019
J. Ravi, B.R. Selvan, K.A. Venkatesan, et al., Evaluation of radiation stability of N,N-didodecyl N',N'-di-octyl diglycolamide: a promising reagent for actinide partitioning. J Radioanal Nucl Ch, 2014, 299: 879-885. DOI: 10.1007/s10967-013-2776-4http://doi.org/10.1007/s10967-013-2776-4
H. Galan, A. Nunez, A.G. Espartero, et al., Radiolytic stability of TODGA: characterization of degraded samples under different experimental conditions. Procedia Chem, 2012, 7: 195-201. DOI: 10.1016/j.proche.2012.10.033http://doi.org/10.1016/j.proche.2012.10.033
S. Nave, G. Modolo, C. Madic, et al., Aggregation properties of N,N,N',N'- tetraoctyl-3-oxapentanediamide (TODGA) in n-dodecane. Solvent Extr Ion Exc, 2004, 22: 527-551. DOI: 10.1081/Sei-120039721http://doi.org/10.1081/Sei-120039721
K. Shimojo, K. Kurahashi, H. Naganawa, Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids. Dalton Trans, 2008, 5083-5088. DOI: 10.1039/b810277phttp://doi.org/10.1039/b810277p.
Y.L. Shen, S.F. Wang, L. Zhu, et al., Extraction of Th(IV) from an HNO3 Solution by Diglycolamide in Ionic Liquids. Ind Eng Chem Res, 2011, 50: 13990-13996. DOI: 10.1021/ie102512mhttp://doi.org/10.1021/ie102512m
P.R.V. Rao, K.A. Venkatesan, A. Rout, et al., Potential applications of room temperature ionic liquids for fission products and actinide separation. Sep Sci Technol, 2012, 47: 204-222. DOI: 10.1080/01496395.2011.628733http://doi.org/10.1080/01496395.2011.628733
T. Mori, K. Takao, K. Sasaki, et al., Homogeneous liquid-liquid extraction of U(VI) from HNO3 aqueous solution to betainium bis(trifluoromethylsulfonyl)imide ionic liquid and recovery of extracted U(VI). Sep Purif Technol, 2015, 155: 133-138. DOI: 10.1016/j.seppur.2015.01.045http://doi.org/10.1016/j.seppur.2015.01.045
S. Dai, Y.H. Ju, C.E. Barnes, Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J Chem Soc Dalton, 1999, 1201-1202. DOI: 10.1039/A809672dhttp://doi.org/10.1039/A809672d
H.M. Luo, S. Dai, P.V. Bonnesen, et al., Extraction of cesium ions from aqueous solutions using calix[4]arene-bis(tert-octylbenzo-crown-6) in ionic liquids. Anal Chem, 2004, 76: 3078-3083. DOI: 10.1021/Ac049949khttp://doi.org/10.1021/Ac049949k.
P. Giridhar, K.A. Venkatesan, T.G. Srinivasan, et al., Extraction of uranium(VI) from nitric acid medium by 1.1 M tri-n-butylphosphate in ionic liquid diluent. J Radioanal Nucl Chem, 2005, 265: 31-38. DOI: 10.1007/s10967-005-0785-7http://doi.org/10.1007/s10967-005-0785-7
K. Nakashima, F. Kubota, T. Maruyama, et al., Ionic liquids as a novel solvent for lanthanide extraction. Anal Sci, 2003, 19: 1097-1098. DOI: 10.2116/analsci.19.1097http://doi.org/10.2116/analsci.19.1097
M.L. Dietz, D.C. Stepinski, Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids. Talanta, 2008, 75: 598-603. DOI: 10.1016/j.talanta.2007.11.051http://doi.org/10.1016/j.talanta.2007.11.051.
Y.L. Shen, X.W. Tan, L. Wang, et al., Extraction of the uranyl ion from the aqueous phase into an ionic liquid by diglycolamide. Sep Purif Technol, 2011, 78: 298-302. DOI: 10.1016/j.seppur.2011.01.042http://doi.org/10.1016/j.seppur.2011.01.042.
Y.W. Zhang, Z Y Liu, F Y Fan, et al., Extraction of uranium and thorium from nitric acid solution by TODGA in ionic liquids. Sep Sci Technol, 2014, 49: 1895-1902. DOI: 10.1080/01496395.2014.903279http://doi.org/10.1080/01496395.2014.903279
J Fu, Q D Chen, T X Sun, et al., Extraction of Th(IV) from aqueous solution by room-temperature ionic liquids and coupled with supercritical carbon dioxide stripping. Sep Purifn Technol, 2013, 119: 66-71. DOI: 10.1016/j.seppur.2013.09.004http://doi.org/10.1016/j.seppur.2013.09.004.
D Jiang, L Liu, N Pan, et al., The separation of Th(IV)/U(VI) via selective complexation with graphene oxide. Chem Eng J, 2015, 271: 147-154. DOI: 10.1016/j.cej.2015.02.066http://doi.org/10.1016/j.cej.2015.02.066
T X Sun, X H Shen, Q D Chen, et al., Identification of F- and SO42- as the radiolytic products of the ionic liquid C(4)mimNTf(2) and their effect on the extraction of UO22+. Radiat Phys Chem, 2013, 83: 74-78. DOI: 10.1016/j.radphyschem.2012.10.004http://doi.org/10.1016/j.radphyschem.2012.10.004
W J Yuan, Y Y Ao, L Zhao, et al., gamma-ray induced radiolysis of [C(2)mim][NTf2] and its effects on Dy3+ extraction. Nucl Sci Tech, 2015, 26: 92-96.
V A Cocalia, M P Jensen, J D Holbrey, et al., Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents. Dalton Trans, 2005, 1966-1971. DOI: 10.1039/B502016Fhttp://doi.org/10.1039/B502016F
I Billard, A Ouadi, C Gaillard, Is a universal model to describe liquid-liquid extraction of cations by use of ionic liquids in reach? Dalton Trans, 2013, 42: 6203-6212. DOI: 10.1039/C3dt32159bhttp://doi.org/10.1039/C3dt32159b
Y Sugo, Y Izumi, Y Yoshida, et al., Influence of diluent on radiolysis of amides in organic solution. Radiat Phys Chem, 2007, 76: 794-800. DOI: 10.1016/j.radphyschem.2006.05.008http://doi.org/10.1016/j.radphyschem.2006.05.008
D Allen, G Baston, A E Bradley, et al., An investigation of the radiochemical stability of ionic liquids. Green Chem, 2002, 4: 152-158. DOI: 10.1039/B111042Jhttp://doi.org/10.1039/B111042J
L Y Yuan, J Peng, L Xu, et al., Radiation effects on hydrophobic ionic liquid [C(4)mim][NTf2] during extraction of strontium ions. J Phys Chem B, 2009, 113: 8948-8952. DOI: 10.1021/jp9016079http://doi.org/10.1021/jp9016079
W J Yuan, Y Y Ao, L Zhao, et al., Influence of radiation effect on extractability of an isobutyl-BTP/ionic liquid system: quantitative analysis and identification of radiolytic products. Rsc Advances, 2014, 4: 51330-51333. DOI: 10.1039/C4RA08308Chttp://doi.org/10.1039/C4RA08308C
0
Views
0
Downloads
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution