1.Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, China
2.Engineering Physics Institute, University of Wisconsin Madison, Madison 53706, USA
Corresponding author: cnst_xizhen@163.com
Scan for full text
Lei Wu, Hai-Jun Jia, Xi-Zhen Ma, et al. Research on the effect of Reynolds correlation in natural-convection film condensation. [J]. Nuclear Science and Techniques 28(6):85(2017)
Lei Wu, Hai-Jun Jia, Xi-Zhen Ma, et al. Research on the effect of Reynolds correlation in natural-convection film condensation. [J]. Nuclear Science and Techniques 28(6):85(2017) DOI: 10.1007/s41365-017-0240-9.
Film condensation is a vital phenomenon in the nuclear engineering applications, such as the gas-steam pressurizer design, and heat removing on containment in the case of postulated accident. Reynolds number in film condensation can be calculated from either the mass relation or the energy relation, but few researches have distinguished the difference between them at present. This paper studies the effect of Reynolds correlation in the natural convection film condensation on the outer tube. The general forms of the heat transfer coefficient correlation of film condensation are developed in different flow regimes. By simultaneously solving a set of the heat transfer coefficient correlations with ,Re,mass, and ,Re,energy, the general expressions for ,Re,mass, and ,Re,energy, and the relation between the corresponding heat transfer coefficients are obtained. In the laminar and wave-free flow regime,Re,mass, and ,Re,energy, are equivalent, while in the laminar and wavy flow regime,Re,mass, is much smaller than ,Re,energy, and the deviation of the corresponding average heat transfer coefficients is about 30% at the maximum. In the turbulent flow regime, the relation of ,Re,mass, and ,Re,energy, is greatly influenced by Prandtl number. The relative deviation of their average heat transfer coefficients are the non-linear function of Reynolds number and Prandtl number. Compared with experimental results, the heat transfer coefficient calculated from ,Re,energy, is more accurate.
Film condensationReynolds correlationHeat transfer coefficientNatural convection
J.W. Rose, Condensation heat transfer fundamentals. Chem Eng Rese Design, 1998, 76(2):143-152. DOI: 10.1205/026387698524712http://doi.org/10.1205/026387698524712
W. Nusselt, The condensation of steam on cooled surfaces. Z Ver Dtsch Ing, 1916, 60: 541-546.
W.M. Rohsenow W, Heat transfer and temperature distribution in laminar film condensation. Trans. Asme, 1956, 78: 1645-1648.
E.M Sparrow, J.L. Gregg. A boundary layer treatment of laminar film condensation. J Heat Transfer, 1959, 81(1): 13-18.
W.J. Minkowycz, E.M. Sparrow. Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion. Intern J Heat Mass Trans, 1966, 9(10): 1125-1144. DOI: 10.1016/0017-9310(66)90035-4http://doi.org/10.1016/0017-9310(66)90035-4
E.M. Sparrow, S.H. Lin, Condensation heat transfer in the presence of a non-condensable gas. J Heat Trans, 1964, 86(3): 430-436. DOI: 10.1115/1.3688714http://doi.org/10.1115/1.3688714
L.E. Herranz, A. Campo, Adequacy of the heat-mass transfer analogy to simulate containment atmospheric cooling in the new generation of advanced nuclear reactors: experimental confirmation. Nucl technol, 2002, 139(3): 221-232. http://www.ans.org/store/article-3315/http://www.ans.org/store/article-3315/
J.C.Y. Koh, An integral treatment of two-phase boundary layer in film condensation. J Heat Trans, 1961, 83(3): 359-362. DOI: 10.1115/1.3682285http://doi.org/10.1115/1.3682285
V.E. Denny, A.F. Mills, V.J. Jusionis, Laminar film condensation from a steam-air mixture undergoing forced flow down a vertical surface. J Heat Trans, 1971, 93(3): 297-304. DOI: 10.1115/1.3449814http://doi.org/10.1115/1.3449814
M.H. Kim, M.L. Corradini, Modeling of condensation heat transfer in a reactor containment. Nucl Eng Design, 1990, 118(2): 193-212. DOI: 10.1016/0029-5493(90)90057-5http://doi.org/10.1016/0029-5493(90)90057-5
P.F. Peterson, Theoretical basis for the Uchida correlation for condensation in reactor containments. Nucl Eng Design, 1996, 162(2): 301-306. DOI: 10.1016/0029-5493(95)01125-0http://doi.org/10.1016/0029-5493(95)01125-0
L. Wu, Y. Liu, H.J. Jia, Improved diffusion layer model based on real gas state equation for high pressure condensation. Annals of Nuclear Energy, 2015, 85, 444-452. DOI: 10.1016/j.anucene.2015.05.006http://doi.org/10.1016/j.anucene.2015.05.006
S. Kima, Y.G. Lee, D.W. Jerng, Laminar film condensation of saturated vapor on an isothermal vertical cylinder. International J Heat Mass Trans, 2015, 83: 545-551. DOI: 10.1016/j.ijheatmasstransfer.2014.12.009http://doi.org/10.1016/j.ijheatmasstransfer.2014.12.009
S. Mosayebidorcheh, T. Mosayebidorcheh, MM. Rashidi, Analytical solution of the steady state condensation film on the inclined rotating disk by a new hybrid method. Scientific Research and Essays, 2014, 9(12), 557-565. DOI: 10.13140/2.1.4464.2241http://doi.org/10.13140/2.1.4464.2241
B.J. Chung, M.C. Kim, M. Ahmadinejad, Film-wise and drop-wise condensation of steam on short inclined plates. J Mech Sci Technol, 2008, 22(1): 127-133. http://link.springer.com/article/10.1007/s12206-007-1015-8http://link.springer.com/article/10.1007/s12206-007-1015-8
L. Slegers, R.A. Seban, Laminar film condensation of steam containing small concentrations of air. Intern Journal of Heat and Mass Transfer, 1970, 13(12): 1941-1947. DOI: 10.1016/0017-9310(70)90094-3http://doi.org/10.1016/0017-9310(70)90094-3
S.S. Kutateladze, I.I. Gogonin, Heat transfer in film condensation of slowly moving vapor. Intern J Heat Mass Trans, 1979, 22(12): 1593-1599. DOI: 10.1016/0017-9310(79)90075-9http://doi.org/10.1016/0017-9310(79)90075-9
G.M. Hebbard, W.L. Badger, Steam-Film Heat Transfer Coefficients for Vertical Tubes. Industrial & Engineering Chemistry, 1934, 26(4): 420-424. DOI: 10.1021/ie50292a013http://doi.org/10.1021/ie50292a013
J.W. Rose, Fundamentals of condensation heat transfer-Laminar film condensation. JSME Intern J, 1988, 31: 357-375. http://ci.nii.ac.jp/naid/110002494180/http://ci.nii.ac.jp/naid/110002494180/
X.Y. Wei, X.D. Fang, R.R. Shi, A comparative study of heat transfer coefficients for film condensation. Energy Sci and Technol, 2012, 3(1): 1-9. http://www.cscanada.net/index.php/est/article/view/2344http://www.cscanada.net/index.php/est/article/view/2344
G. Neiils, S. Kliein, Heat transfer. Cambridge University Press (USA), 2009:799-806.
H. Uchida, A. Oyama, Y. Togo, Evaluation of post-incident cooling systems of light water power reactors. Tokyo University., 1964. http://www.osti.gov/scitech/biblio/4023463http://www.osti.gov/scitech/biblio/4023463
A.A. Dehbi, The effects of noncondensable gases on steam condensation under turbulent natural convection conditions. Massachusetts Institute of Technology, 1991. http://dspace.mit.edu/handle/1721.1/13905http://dspace.mit.edu/handle/1721.1/13905
M.H. Anderson, L.E. Herranz, M.L. Corradini. Experimental analysis of heat transfer within the AP600 containment under postulated accident conditions. Nucl Eng Design, 1998, 185(2): 153-172.DOI: 10.1016/S0029-5493(98)00232-5http://doi.org/10.1016/S0029-5493(98)00232-5
J.W. Kim, Y.G. Lee, H.K. Ahn, et al., Condensation heat transfer characteristic in the presence of noncondensable gas on natural convection at high pressure. Nucl Eng Design, 2009, 239(4):688-698.DOI: 10.1016/j.nucengdes.2008.12.011http://doi.org/10.1016/j.nucengdes.2008.12.011
R.I. Pashkevich, P.V. Muratov, Film condensation in a large diameter tube with upward steam flow. Intern J Heat Mass Trans, 2015,81: 804-810. DOI: 10.1016/j.ijheatmasstransfer.2014.11.001http://doi.org/10.1016/j.ijheatmasstransfer.2014.11.001
M. Kondo, H. Nakamura, Y. Kukita, et al., Primary-side two-phase flow and heat transfer characteristics of a horizontal-tube PCCS condenser. In: 14th International Conference on Nuclear Engineering, Miami. 2006, 685-693. DOI: 10.1115/ICONE14-89652http://doi.org/10.1115/ICONE14-89652
J.G. Collier, J.R. Thome, Convective boiling and condensation. Oxford University Press(UK), 1994:445-450.
T.L. Bergman, A.S. Lavine, F.P. Incropera, et al., Fundamentals of Heat and Mass Transfer, 7th Edition, John Wiley & Sons, Inc., New Jersey(USA), 2011: 675-679.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution