Jian Ruan, Bo Xu, Ming-Hai Li, et al. A specialized code for operation transient analysis and its application in fluoride salt-cooled high temperature reactors. [J]. Nuclear Science and Techniques 28(8):119(2017)
DOI:
Jian Ruan, Bo Xu, Ming-Hai Li, et al. A specialized code for operation transient analysis and its application in fluoride salt-cooled high temperature reactors. [J]. Nuclear Science and Techniques 28(8):119(2017) DOI: 10.1007/s41365-017-0268-x.
A specialized code for operation transient analysis and its application in fluoride salt-cooled high temperature reactors
摘要
Abstract
Fluoride salt-cooled High-temperature Reactors (FHRs) includemany attractive features, such as high temperature, large heat capacity, low pressureand strong inherent safety. Transient characteristics of FHR areparticularly important for evaluating its operation performance.Thus, a specialized code OCFHR (Operation and Control analysis code of FHR)isused to studyan experimental FHR’s operation behaviors. The geometric modeling of OCFHR is based on one-dimensional lumped parameter method,and some simplifications are taken into consideration during simulation due to the existence of complex structures such as pebble bed, intermediate heat exchanger (IHX),air radiator (AR) and multiply channels. Apoint neutron kinetics modelis developed and neutronphysics calculation is neededto provide some key inputs including axial power density distribution, reactivity coefficients and parameters about delayed neutron precursors. For analyzing the operational performance, five disturbed transients are simulated, involvingreactivity step insertion, variations of coolant mass flow rate of primaryloop andintermediate loop, adjustment of air inlet temperature,and mass flow rate of air-cooling system. Simulation results indicate that inherent self-stabilityof FHRrestrains severe consequencesunderabove transients, and some dynamic featuresareobserved, such as large negative temperature feedbacks, remarkable thermal inertia, and high response delay.
关键词
Keywords
FHRSimulationPebble bedTransient analysis;
references
C. Forsberg, The advanced high-temperature reactor: high-temperature fuel, liquid salt coolant, and liquid-metal reactor plant. Prog. Nucl. Energy 47(1-4), 32-43 (2005). DOI: 10.1016/j.pnucene.2005.05.002http://doi.org/10.1016/j.pnucene.2005.05.002
TMSR center, SINAP. Pre-conceptual Design of a 2MW Pebble Bed Fluoride Salt Coolant High Temperature Test Reactor. (2012).
D.F. Williams, Assessment of CandidateMolten Salt Coolants for theAdvanced High-Temperature Reactor (AHTR). ORNL-TM-2006-12 U.S. Department of energy (2006). DOI: 10.2172/885975.http://doi.org/10.2172/885975.
C.H. Andrades, A.T. Cisneros, J.K. Choi, et al., Technical Description of the “Mark 1” Pebble-Bed Fluoride-salt-Cooled High-Temperature Reactor (PB-FHR) Power Plant. UCBTH-14-002. Department of Nuclear Engineering, University of California, Berkeley (2014). DOI: 10.13140/RG.2.1.4915.7524http://doi.org/10.13140/RG.2.1.4915.7524.
M. Chen. Transient analysis of an FHR coupled to a helium Brayton power cycle. Prog. Nucl. Energy 83, 283-293 (2015). DOI: 10.1016/j.pnucene.2015.02.015http://doi.org/10.1016/j.pnucene.2015.02.015.
M. Li, J. Zhang, Y. Zou et al., Disturbed Transient Analysis with Stable Operation Mode of TMSR-SF1. NURETH-16, Hyatt Regency Chicago, America, August 30 - September 4, on CD-ROM (2015) http://www.ans.org/store/item-700399/http://www.ans.org/store/item-700399/
Q. Lv, H.C. Lin, I.H. Kim et al., DRACS thermal performance evaluation for FHR. Annuals of Nuclear Energy 77,115-128(2015).DOI: 10.1016/j.anucene.2014.10.032http://doi.org/10.1016/j.anucene.2014.10.032.
G. Ablay. A modeling and control approach to advanced nuclear power plants withgas turbines. Energy Conversion and Management 76,899-909(2013). DOI: 10.1016/j.enconman.2013.08.048http://doi.org/10.1016/j.enconman.2013.08.048
C. Forsberg, L.W. Hu, P. Peterson et al. Fluoride-salt-cooled high-Temperature Reactor(FHR) for Power and Process Heat. MIT-ANP-TR-157 (2014).
X. Huang. Research of Runge-Kutta method. Heilongjiang Sci. Tec. 23,23-27(2012). DOI: 10.3969/j.issn.1673-1328.2012.23.063http://doi.org/10.3969/j.issn.1673-1328.2012.23.063 (In Chinese)
M.R. Galvin. System Model of a Natural Circulation Integral Test Facility. Oregon State University (2009).
W. vanAntwerpen et al., A review of correlations to model the packing structure and effective thermalconductivity in packed beds of mono-sized spherical particles.Nuclear Engineering and Design 240, 1803-1818 (2010). DOI: 10.1016/j.nucengdes.2010.03.009http://doi.org/10.1016/j.nucengdes.2010.03.009
N. Wakao et al., Effect of Fluid Dispersion coefficients on Particle-to-Fluid heat transfer coefficients in Packed Beds. Chemical Engineering Sci. 34, 325-336 (1978). DOI: 10.1016/0009-2509(79)85064-2http://doi.org/10.1016/0009-2509(79)85064-2.
S. Ergun. Fluid Flow Through Packed Columns. AIChE J, 18(2):361-371(1972).
S.S. Lomakin, Yu. A. Nechaev. Transient processes and the measurement of reactivity of a reactor containing Beryllium. Translated from AtomnayaEnergiya. Vol 18. No.1, January, 33-40 (1965).DOI: 10.1007/BF01116353http://doi.org/10.1007/BF01116353.
S. Yang et al. (In Chinese) Heat Transfer. BeiJing Higher Education Press: 243-263,(2006).
M. Lin et al., Extension of RELAP5 core power calculation model. Nuclear Power Engineering 28, 16-19(2007). DOI: 10.3969/j.issn.0258-0926.2007.06.005http://doi.org/10.3969/j.issn.0258-0926.2007.06.005