1.Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile--Ife, 220005 Nigeria.
Corresponding author E-mail address: fsolise@oauife.edu.ng;
Scan for full text
Felix S. Olise, Oludaisi I. Oladunjoye, Afis Ajala, et al. Response of multistep compound pre-equilibrium reaction cross-sections for the (
Felix S. Olise, Oludaisi I. Oladunjoye, Afis Ajala, et al. Response of multistep compound pre-equilibrium reaction cross-sections for the (
In furtherance to improving agreement between calculated and experimental nuclear data, the nuclear reaction code GAMME was used to calculate the multi-step compound (MSC) nucleus double-differential cross-sections (DDCs) for proton-induced neutron emission reactions using the Feshbach-Kerman-Koonin (FKK) formalism. The cross-sections were obtained for reactor structural materials involving ,52,Cr(,p, n,),52,Mn,56,Fe(,p, n,),56,Co and ,60,Ni(,p, n,),60,Cu reactions at 22.2 MeV incident energy using the zero-range reaction mechanism. Effective residual interaction strength was 28 MeV and different optical potential parameters were used for the entrance and exit channels of the proton-neutron interactions. The calculated DDCs were fitted to experimental data at the same backward angle of 150°, where the MSC processes dominate. The calculated and experimental data agree well in the region of pre-equilibrium (MSC) reaction dominance against a weaker fit at the lower emission energies. We attribute underestimations to contributions from the other reaction channels; and disagreement at higher outgoing energies to reactions to collectively excited states. Contrary to the FKK multi-step direct (MSD) calculations, contributions from the higher stages to the DDCs are significant. Different sets of parameters resulted in varying levels of agreement of calculated and experimental data for the considered nuclei.
Proton-neutron interactionMulti-step compound theoryOptical model parametersStructural materialsNuclear reactor facilities
H. Feshbach, A. Kerman, S. Koonin, The statistical theory of multi-step compound and direct reactions, Ann. Phys. 125, 429-476 (1980). doi: 10.1016/0003-4916(80)90140-2http://doi.org/10.1016/0003-4916(80)90140-2.
R. Bonetti, M.B. Chadwick, P.E. Hodgson et al., The Feshback-Kerman-Koonin multistep compound reaction theory, Phys. Rep. 202(4), 171-231 (1991). doi: 10.1016/0370-1573(91)90105-Uhttp://doi.org/10.1016/0370-1573(91)90105-U.
R. Bonetti, A.J. Koning, J.M. Akkermans et al., The Feshback-Kerman-Koonin multistep compound reaction theory, Phys. Rep. 247, 1-58 (1994). doi: 10.1016/0370-1573(94)90153-8http://doi.org/10.1016/0370-1573(94)90153-8.
E. Gadioli, P.E. Hodson, Pre-equilibrium nuclear reactions, Oxford University Press, (1992) ISBN 0-19-851734-3.
F.S. Olise, A. Ajala, H.B. Olaniyi, Some calculated (p,α) cross-sections using the alpha particle knock-on and triton pick-up reaction mechanisms: An optimisation of the single-step Feshbach-Kerman-Koonin (FKK) theory, Nucl. Eng. Tech. 48, 482-494 (2016). doi: 10.1016/j.net.2015.11.010http://doi.org/10.1016/j.net.2015.11.010.
T. Tamura, T. Udagawa, D.H. Fengl et al., Deep inelastic reactions treated as multi-step direct reaction processes application to (p, p´) reaction, Phys. Lett. B, 66(2), 109-112 (1977). doi: 10.1016/0370-2693(77)90151-4http://doi.org/10.1016/0370-2693(77)90151-4.
T. Tamura, T. Udagawa, H. Lenske, Multistep direct reaction analysis of continuum spectra in reactions induced by light ions. Phys. Rev. C, 26(2), 379-404 (1982). doi: 10.1103/PhysRevC.26.379http://doi.org/10.1103/PhysRevC.26.379.
H. Nishioka, J.J.M. Verbaarschot, H.A. Weidenmüller et al., Statistical theory of precompound reactions: The multi-step compound process, Ann. Phys. 172(1), 67-99 (1986). doi: 10.1016/0003-4916(86)90020-5http://doi.org/10.1016/0003-4916(86)90020-5.
H. Nishioka, H.A. Weidenmüller, S. Yoshida, Statistical theory of precompound reactions: The multi-step direct process, Ann. Phys. 183(1), 166-187 (1988). doi: 10.1016/0003-4916(88)90250-3http://doi.org/10.1016/0003-4916(88)90250-3.
H. Feshbach, Proceedings of the international Conference on nuclear Physics, (Munich) Vol. II, ed J. de Boer and H.J. Mang (Amsterdam: North-Holland) p 632 (1973).
H.A. Bethe, A continuum theory of the compound nucleus, Phys. Rev. 57, 1125-1144 (1940). doi: 10.1103/PhysRev.57.1125http://doi.org/10.1103/PhysRev.57.1125.
O. Bersillon, Lectures on the computer code SCAT-2, Workshop on applied nuclear theory and nuclear model calculations for nuclear technology applications, Trieste, Italy, 15 Feb-18 Mar (1988).
H. Feshbach, C. E. Porter, V. F. Weisskopf, Model for nuclear reactions with neutrons, Phys. Rev. 96, 448-464 (1954). doi: 10.1103/PhysRev.96.448http://doi.org/10.1103/PhysRev.96.448.
R.D. Woods, D.C. Saxon, Diffuse surface optical model for nucleon-nuclei scattering, Phys. Rev. 95(2), 577-578 (1954). doi: 10.1103/PhysRev.95.577http://doi.org/10.1103/PhysRev.95.577.
A.M.R. Rahman, Neutron cross-sections for 55Mn in the energy range from 0.2 to 22 MeV, Turk. J. Phys. 36, 343-351 (2012).doi: 10.3906/fiz-1107-3http://doi.org/10.3906/fiz-1107-3.
International Atomic Energy Agency, Handbook for calculations of nuclear reaction data, RIPL-2 IAEA, IAEA-Tecdoc-1506, Vienna, 47, (2006).
B.V. Carlson, Optical model calculations with the code ECIS95, Workshop on nuclear data and nuclear reactors: Physics, design and safety, Trieste, Italy, 13 Mar-14 April, 2000.
A.G. Camacho, P.R.S. Gomes, J. Lubian et al., Optical model calculations on the threshold anomaly for the 6Li + 28Si and 7Li + 28Si systems at near-Coulomb-barrier energies, Phys. Rev. C, 82 (2010). doi: 10.1103/PhysRevC.82.067601http://doi.org/10.1103/PhysRevC.82.067601.
S. Kunieda, N. Shigyo, K. Ishibashi, Nuclear data evaluations on zirconium, niobium and tungsten for neutron and proton incidence up to 200 MeV, J. Nucl. Sci. Tech. 41(11), 1047-1058 (2004). doi: 10.1080/18811248.2004.9726329http://doi.org/10.1080/18811248.2004.9726329.
M.E. Kürkçüoğlu, H. Aytekin, I. Boztosun, Optical model analysis of the 16O + 16O nuclear scattering reaction around ELab = 5 Mev/nucleon, G.U. J. Sci. 19(2), 105-112 (2006)..
G.M. Perey, F.G. Perey, Compilation of phenomenological optical-model parameters 1954-1975, Atom. Data and Nucl. Data Tables, 17, 1-101 (1976). doi: 10.1016/0092-640X(76)90007-3http://doi.org/10.1016/0092-640X(76)90007-3.
P.A. Moldauer, Optical model of low energy neutron interactions with spherical nuclei, Nucl. Phys. 47, 65-92 (1963). doi: 10.1016/0029-5582(63)90854-Xhttp://doi.org/10.1016/0029-5582(63)90854-X.
C. Mahaux, R. Sartor, The p-40Ca and n-40Ca mean fields from the iterative moment approach, Nucl. Phys. A, 484(2), 205-263 (1988). doi: 10.1016/0375-9474(88)90071-1http://doi.org/10.1016/0375-9474(88)90071-1.
C. Mahaux, R. Sartor, Single-particle potential and quasiparticle properties of protons in 208Pb, Nucl. Phys. A, 481, 381-406 (1988). doi: 10.1016/0375-9474(88)90335-1http://doi.org/10.1016/0375-9474(88)90335-1.
M. Jamion, C. Mahaux, Real part of the neutron and proton optical potentials at 11 MeV for mass numbers 40 ≤ A ≤ 76, Phys. Rev. C, 34, 2084-2096 (1986). doi: 10.1103/PhysRevC.34.2084http://doi.org/10.1103/PhysRevC.34.2084.
J. Rapaport, An optical model analysis of neutron scattering, Phys. Rev. 87(2), 25-75 (1982). doi: 10.1016/0370-1573(82)90105-3http://doi.org/10.1016/0370-1573(82)90105-3.
D. Wilmore, J. Hodgson, Neutron scattering and reactions on 59Co from 1-20 MeV, J. Phys. G: Nucl. Phys. 11(9), 1007-1023 (1985). doi: 10.1088/0305-4616/11/9/010http://doi.org/10.1088/0305-4616/11/9/010.
K. Yabana, Y. Ogawa, Y. Suzuki, Break-up effect on the elastic scattering and the optical potential of 11Li, Phys. Rev. C, 45, 2909-2918 (1992). doi: 10.1103/PhysRevC.45.2909http://doi.org/10.1103/PhysRevC.45.2909.
M.N. Islam, N. Siddiqua, A.K.M. Harunar-Rashid, Neutron cross sections for 56Fe and 238U, from 0.2 to 22 MeV energy, J. Phys. G: Nucl. Part. Phys. 20, (1994). doi: 10.1088/0954-3899/20/9/016http://doi.org/10.1088/0954-3899/20/9/016.
R. Bonetti, M.B. Chadwick, GAMME Code, Oxford University Report, OUNP-91-16, (1991).
N.S. Biryukov, B.V. Zhuravlev, A.P. Rudenko et al., Spin-Dependence Parameter from Neutron Angular Distributions in (p, n) Reactions, Sov. J. Nucl. Phys. 30(13), (1979). doi: 10.1134/S1063776111060124http://doi.org/10.1134/S1063776111060124.
P. Demetriou, P. Kanjanarat, P.E. Hodgson, FKK analysis of 14 MeV neutrons-induced reactions, J. Phys. G: Nucl. Part. Phys. 20, 1779-1788 (1994). doi: 10.1088/0954-3899/20/11/007http://doi.org/10.1088/0954-3899/20/11/007.
H.B. Olaniyi, P. Demetriou, P.E. Hodgson, Analysis of (p,α) reaction using the pre-equilibrium multi-step direct Feshbach-Kerman-Koonin theory. J. Phys. G: Nucl. Part. Phys. 21, 361-375 (1995). doi: 10.1088/0954-3899/21/3/011http://doi.org/10.1088/0954-3899/21/3/011.
G.F. Bertsch, H. Esbensen, The (p, n) reaction and the nucleon-nucleon force. Rep. Prog. Phys. 50, 607-654 (1987). doi: 10.1088/0034-4885/50/6/001http://doi.org/10.1088/0034-4885/50/6/001.
P. Obložinsky, Particle-hole state densities for statistical multi-step compound reactions, Nucl. Phys. A, 453(1), 127-140 (1986). doi: 10.1007/978-94-009-4636-1_14http://doi.org/10.1007/978-94-009-4636-1_14.
A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections, Canadian J. Phys. 43(8), 1446-1496 (1965). doi: 10.1139/p65-139http://doi.org/10.1139/p65-139.
F.D. Becchetti, G.W. Greenlees, Nucleon-nucleus optical-model parameters, A > 40, E > 50 MeV. Phys. Rev. 182(4), 1190-1209 (1969). doi: 10.1103/PhysRev.182.1190http://doi.org/10.1103/PhysRev.182.1190.
D. Wilmore, P.E. Hodgson, The calculation of neutron cross-sections from optical potentials, Nucl. Phys. 55, 673-694 (1964). doi: 10.1016/0029-5582(64)90184-1http://doi.org/10.1016/0029-5582(64)90184-1.
D.M. Patterson, R.R. Doering, A. Galonsky, An energy-dependent lane-model nucleon-nucleus optical potential, Nucl. Phys. A, 263, 261-275 (1976). doi: 10.1016/0375-9474(76)90172-Xhttp://doi.org/10.1016/0375-9474(76)90172-X.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution