Ping Qu, Guo-Feng Wu, Jing-Xia Wu, et al. Radiation grafting of poly(vinyl acetate) onto wheat straw and properties of the product. [J]. Nuclear Science and Techniques 28(11):156(2017)
DOI:
Ping Qu, Guo-Feng Wu, Jing-Xia Wu, et al. Radiation grafting of poly(vinyl acetate) onto wheat straw and properties of the product. [J]. Nuclear Science and Techniques 28(11):156(2017) DOI: 10.1007/s41365-017-0312-x.
Radiation grafting of poly(vinyl acetate) onto wheat straw and properties of the product
摘要
Abstract
Poly(vinyl acetate) (PVAc) was grafted onto wheat straw by γ-irradiation to improve the compatibility between wheat straw and high density polyethelene (PE). The grafting was proved by Fourier transform infrared (FTIR) spectroscopy. The compact structure of wheat straw was loosened because the chemical bonds and crystalline structure were destructed by the ,γ,-rays. The modified wheat straw needed less energy for thermal transition, as revealed by differential scanning calorimetry (DSC). Thermal analysis revealed that grafted PVAc acted as a protective barrier for the wheat straw, and leads to an increase in maximum pyrolysis temperature. The crystallite size of grafted wheat straw decreased to 5.33 nm from 5.63 before irradiation. There were holes in melted form appeared on the surface of the grafted wheat straws. Both the grafted PVAc and irradiation are beneficial to lower the torque of wheat straw/PE melts and improve its mechanical properties by 36%. Possible mechanism of irradiation grafting was proposed.
L. Jiang, S. Hu, L.S. Sun, et al., Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresour. Technol. 146, 254-260 (2013). DOI: 10.1016/j.biortech.2013.07.063http://doi.org/10.1016/j.biortech.2013.07.063
M. Jebrane, F. Pichavant, G. Sèbe, A comparative study on the acetylation of wood by reaction with vinyl acetate and acetic anhydride. Carbohydr. Polym. 83, 339-345 (2011). DOI: 10.1016/j.carbpol.2010.07.035http://doi.org/10.1016/j.carbpol.2010.07.035
J. Schroeter, F. Felix, Melting cellulose. Cellulose 12, 159-165 (2005). DOI: 10.1007/s10570-004-0344-3http://doi.org/10.1007/s10570-004-0344-3
C. Chen, M. Cho, B.W. Kim, et al., Thermo plasticization and characterization of kenaf fiber by benzylation. J. Ind. Eng. Chem. 18, 1107-1111 (2012). DOI: 10.1016/j.jiec.2011.12.012http://doi.org/10.1016/j.jiec.2011.12.012
R. M. Rowell, Chemical modification of wood: A short review. Wood Mater. Sci. Eng. 1, 29-33 (2006). DOI: 10.1080/17480270600670923http://doi.org/10.1080/17480270600670923
G. Zhang, K. Huang, X. Jiang, et al., Acetylation of straw for thermoplastic applications. Carbohydr. Polym. 96, 218-226 (2013). DOI: 10.1016/j.carbpol.2013.03.069http://doi.org/10.1016/j.carbpol.2013.03.069
R. Ou, Q. Wang, M.P. Wolcott, et al., Rheological cehavior and mechanical properties of wood flour/high density polyethylene blends: Effects of esterification of wood with citric acid. Polym. Compos. 37, 553-560 (2014). DOI: 10.1002/pc.23212http://doi.org/10.1002/pc.23212
S.S. Panesar, S. Jacob, M. Misra, et al., Functionalization of lignin: Fundamental studies on aqueous graft copolymerization with vinyl acetate. Ind. Crops Prod. 46, 191-196 (2013). DOI: 10.1016/j.indcrop.2012.12.031http://doi.org/10.1016/j.indcrop.2012.12.031
B. Zhang, R. Wei, M. YU, et al. Graft co-polymerization of maleic acid and vinyl acetate onto poly(vinylidene fluoride) powder by pre-irradiation technique. Nucl. Sci. Tech. 23: 103-108 (2012). DOI: 10.13538/j.1001-8042/nst.23.103-108http://doi.org/10.13538/j.1001-8042/nst.23.103-108
M. Sánchez-Cabezudo, R. Masegosa, C. Salom, et al., Correlations between the morphology and the thermo-mechanical properties in poly (vinyl acetate)/epoxy thermosets. J. Therm. Anal. Calorim. 102, 1025-1033 (2010). DOI: 10.1007/s10973-010-0881-yhttp://doi.org/10.1007/s10973-010-0881-y
T.M. Don, C.F. King, W.Y. Chiu, Synthesis and properties of chitosan-modified poly(vinyl acetate). J. Appl. Polym. Sci. 86, 3057-3063 (2002). DOI: 10.1002/app.11329http://doi.org/10.1002/app.11329
Q.M. Li, X.J. Li, X.Y. Xiong, et al., Analysis of degradation products and structural characterization of giant reed and Chinese silvergrass pretreated by 60Co γ-irradiation. Ind. Crops Prod. 83, 307-315 (2016). DOI: 10.1016/j.indcrop.2016.01.024http://doi.org/10.1016/j.indcrop.2016.01.024
Y. Liu, H. Zhou, L. Wang, et al., Improving saccharomyces cerevisiae growth against lignocellulose-derived inhibitors as well as maximizing ethanol production by a combination proposal of γ-irradiation pretreatment with in situ detoxification. Chem. Eng. J. 287, 302-312 (2016). DOI: 10.1016/j.cej.2015.10.086http://doi.org/10.1016/j.cej.2015.10.086
J. Wu, J. Li, B. Deng, et al., Self-healing of the superhydrophobicity by ironing for the abrasion durable superhydrophobic cotton fabrics. Sci. Rep. 3 2951-2951 (2013). doi: 10.1038/srep02951http://doi.org/10.1038/srep02951
J.N. Hay, and L. Sharma, Crystallisation of poly (3-hydroxybutyrate)/polyvinyl acetate blends. Polymer 41, 5749-5757 (2000). DOI: 10.1016/S0032-3861(99)00807-1http://doi.org/10.1016/S0032-3861(99)00807-1
M.M. Ibrahim, W.K. El-Zawawy, Y. Jüttke, et al., Cellulose and microcrystalline cellulose from straw and banana plant waste: preparation and characterization. Cellulose 20, 2403-2416 (2013). DOI: 10.1007/s10570-013-9992-5http://doi.org/10.1007/s10570-013-9992-5
T.E. Motaung, Z. Gqokoma, L.Z. Linganiso, et al., The effect of acid content on the poly(furfuryl) alcohol/cellulose composites. Polym. Compos. 37, 2434-2441 (2016). DOI: 10.1002/pc.23428http://doi.org/10.1002/pc.23428
C. Zhang, X. Su, X. Xiong, et al., 60Co γ-radiation-induced changes in the physical and chemical properties of rapeseed straw. Biomass Bioenerg. 85, 207-214 (2016). DOI: 10.1021/bm060168yhttp://doi.org/10.1021/bm060168y
A.A. Morandim-Giannetti, J.A.M. Agnelli, B.Z. Lanças, et al., Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties. Carbohydr. Polym. 87, 2563-2568 (2012). DOI: 10.1016/j.carbpol.2011.11.041http://doi.org/10.1016/j.carbpol.2011.11.041
P. Qu, X. Zhang, Y. Zhou, et al., Biomimetic synthesis of hydroxyapatite on cellulose nanofibrils and its application. Sci. Adv. Mat. 4, 187-192 (2012). DOI: 10.1166/sam.2012.1271http://doi.org/10.1166/sam.2012.1271
K. Karthika, A.B. Arun, P.D. Rekha, Enzymatichydrolysisandcharacterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohydr. Polym. 90, 1038-1045 (2012). DOI: 10.1016/j.carbpol.2012.06.040http://doi.org/10.1016/j.carbpol.2012.06.040
U. Gryczka, W. Migdal, D. Chmielewska, et al., Examination of changes in the morphology of lignocellulosic fibers treated with e-beam irradiation. Radiat. Phys. Chem. 94, 226-230 (2014). DOI: 10.1016/j.radphyschem.2013.07.007http://doi.org/10.1016/j.radphyschem.2013.07.007
V. Hristov, S. Vasileva. Dynamic mechanical and thermal properties of modified poly(propylene) wood fiber composites. Macromol. Mater. Eng. 288, 798-806 (2003). DOI: 10.1002/mame.200300110http://doi.org/10.1002/mame.200300110
R. Ou, Y. Xie, M.P. Wolcott, et al., Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites. Compos. Sci. Technol. 93, 68-75 (2014). DOI: 10.1016/j.compscitech.2014.01.001http://doi.org/10.1016/j.compscitech.2014.01.001
L. Dehne, C.V. Babarro, B. Saake, et al., Influence of lignin source and esterification on properties of lignin-polyethylene blends. Ind. Crops Prod. 86, 320-328 (2016). DOI: 10.1016/j.indcrop.2016.04.005http://doi.org/10.1016/j.indcrop.2016.04.005
A. Alberti, S. Bertini, G. Gastaldi, et al., Electron beam-irradiated textile cellulose fibers: ESR studies and derivatisation with glycidyl methacrylate (GMA). Eur. Polym. J. 41, 1787-1797 (2005). DOI: 10.1016/j.eurpolymj.2005.02.016http://doi.org/10.1016/j.eurpolymj.2005.02.016
C. Xiao, M. Yang, Controlled preparation of physical cross-linked starch-g-PVA hydrogel. Carbohydr. Polym. 64, 37-40 (2006). DOI: 10.1016/j.carbpol.2005.10.020http://doi.org/10.1016/j.carbpol.2005.10.020
Radiation synthesis of polymer/clay nanocomposite hydrogels with high mechanical strength
Radiation synthesis and characteristics of PTFE-g-PSSA ion exchange membrane applied in vanadium redox battery
Improvement of carbon fiber surface properties using electron beam irradiation
ESR STUDY ON RADIATION GRAFTING REACTION OF INORGANIC OXIDES
Related Author
No data
Related Institution
Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University
School of Materials and Engineering, University of Science and Technology Beijing
Department of Energy and Resources Engineering, College of Engineering, Peking University
Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry, College of Chemistry & Molecular Engineering, Peking University
Instituto de Pesquisas Energéticas e Nucleares – IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitária